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In order to investigate hyperspectral images, many techniques such as multivariate image analysis (MIA) or multivariate curve resolu-
tion–alternating least squares (MCR–ALS) can be applied. When focusing on the use of MCR–ALS, constraints are of the utmost impor-
tance for a correct resolution of the data into its individual contributions. In this article, a fuzzy clustering pattern recognition method 
(fuzzy C-means) is applied on experimental data in order to improve the results obtained within the MCR–ALS analysis. The big advan-
tage of a fuzzy clustering technique over a hard clustering technique, such as k-means, is that the algorithm determines the probability 
of a pixel to be assigned to a component, indicating that a pixel can be part of multiple clusters (or components). This is, of course, an 
important property for dealing with data in which a lot of overlap between the components in the spatial direction occurs. This article 
deals briefly with the implementation of the constraint into the MCR–ALS algorithm and then shows the application of the constraint on 
an oil-in-water emulsion obtained by Raman spectroscopy, in which the different components can be decomposed in a clearer way and 
the interface between the oil and water bubbles becomes more visible.
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Introduction
To investigate the spatial distribution of individual compo-
nents present in a complex sample, one usually falls back 
on using spectral or hyperspectral imaging (HSI) techniques, 
and analysing the data with multivariate image analysis 
(MIA)1,2 or multivariate curve resolution–alternating least 
squares (MCR–ALS).3,4 A key factor in the correct resolu-
tion of a mixture by using MCR–ALS is the application of 
constraints, which limit the number of possible solutions 
to the problem. For hyperspectral imaging data, many of 

the constraints available for traditional process data (e.g. 
unimodality, closure etc.) cannot be applied as there is an 
unfolding step of the hyperspectral image cube to the data 
matrix D. We, therefore, propose the implementation and 
application of a constraint based on a clustering technique 
enabling the improvement of the MCR–ALS resolution of the 
(hyperspectral) data. The purpose of the constraint is to clas-
sify the different data elements (further referred to as pixels 
for readability) to the correct components.
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Clustering techniques are pattern recognition methods and 
have been widely applied in chemistry for data analysis.5,6 
The method used here is the fuzzy C-means (FCM) clustering 
algorithm.7,8 Contrary to a hard clustering technique, such 
as k-means,9 where a pixel is assigned to one and only one 
cluster, a fuzzy clustering technique assigns membership 
levels of the different pixels to the clusters. Most obviously, 
within the MCR–ALS framework, the number of clusters is 
the same as the number of components. A parallel can be 
made between fuzzy clustering and the local rank technique.10 
In local rank, the rank of pixels is estimated beforehand and 
this information is then used to determine the presence or 
absence of the pixels in the final component distribution maps. 
In fuzzy clustering, one pixel can belong to multiple clusters, 
which can be seen as a different version of the local rank 
constraint.

Within this article, we focus on the explanation of the imple-
mentation and application of the fuzzy C-means clustering 
technique within the MCR–ALS analysis and use hyperspectral 
images of an oil-in-water sample to demonstrate the tech-
nique.

Theory: MCR–ALS with fuzzy 
clustering
Even though many detailed explanations can be found about 
MCR–ALS,1,11,12 a brief overview is provided in order to explain 
the basic concept of the technique and understand some of its 
limitations. MCR–ALS can be applied to (spectroscopic) data 
that follow an approximation of the Beer–Lambert law, and 
thus can be decomposed into a bilinear model of pure signal 
contributions, as shown in Equation (1):

	 D = CST + E	 (1)

where D (m × n) represents the data matrix of the multicom-
ponent system, C (m × k) contains the concentration profiles 
of the k components, ST (k × n) the corresponding spectral 
profiles of the k components and E (m × n) is the matrix that 
expresses the residuals of the model (i.e. mainly noise). For 
HSI data, the bilinear model still holds, but now for every 
data pixel. This means that the original data cube has to be 
unfolded into a data matrix, from the original spatial–spectral 
dimensions to a two-way data matrix.2,13

The decomposition problem described in Equation (1), in 
which we search for C and ST, is an inverse problem, and thus 
no unique solutions can be found. Many possible solutions 
have the same quality of fit,14 leading to an uncertainty in the 
solutions which we refer to as ambiguity.3 In order to limit the 
extent of these ambiguities and obtain reliable and meaningful 
results, constraints are added to the optimisation process to 
reduce the possible solutions for C and ST. Note that these 
constraints are often derived from the physical nature of the 
system. In this paper, a fuzzy clustering constraint is added to 
aid in the resolution of the data. The algorithm used for this 

purpose is the fuzzy C-means approach.7,8 It is a form of soft 
clustering in which each data point (pixel) can belong to more 
than one cluster. Cluster membership probabilities indicate 
the degree to which data points (pixels) belong to each cluster. 
As for any constraint, the constraint is applied at each itera-
tion of the optimisation process. This has the advantage, over 
using it as a post-processing technique, that the classification 
membership probabilities are updated at each step of the opti-
misation process. These membership probabilities (“weights”) 
are calculated by a minimisation of the objective function, Jm, 
shown in Equation (2):
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With m being a positive number between 1 and infinity, uij is 
the membership of xi in cluster j [Equation (3)], xi is a data pixel 
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This iterative minimisation process is stopped when it 
converges or, otherwise said, reaches a local minimum or 
saddle point of Jm. The value of m determines the level of 
cluster fuzziness (when m is equal to 1, the membership 
converges to 0 or 1). Without prior information, m is usually 
chosen to be equal to 2 during the fuzzy C-means approach. 
The method differs from k-means by the addition of the 
membership value uij and the fuzzifier m.

The membership probabilities obtained by the fuzzy clus-
tering algorithm (the values uij, obtained from the minimised 
objective function Jm) are then used as weights for the concen-
tration profiles (by element-wise multiplication) to obtain 
the new, constrained, concentration profiles (Ĉ). The overall 
MCR–ALS process with the fuzzy clustering constraint can 
be summarised in Figure 1. Additionally, we want to bring 
attention to the fact that the constraint is implemented in the 
MCR–ALS loop after the non-negativity constraint and can be 
applied on one or several of the components of the analysis.

Experimental and data
In order to create the oil-in-water emulsion sample, a thick-
ener, consisting of a paraffin oil (Sigma-Aldrich, France) mix 
and water, was prepared and mixed together with octane 
(Sigma-Aldrich, France) in a 1 : 99% ratio. To stabilise this 
emulsion, two surfactants (span 60, Sigma-Aldrich, France 
and tween 60, Sigma-Aldrich, France) were added in a 10–90% 
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ratio, respectively. The hyperspectral image of the sample 
was collected with a Horiba Scientific Labram HR Evolution 
Raman spectrometer over a range of 100–4000 cm–1. To avoid 
degradation of the sample due to laser influence, a Linkam 
THM600 sample holder was used, which is a temperature-
controlled microscope stage with an accuracy up to 0.01°C. 
The temperature was kept constant at room temperature 
(24°C). The spectra were recorded with a green laser (515 nm) 
for an acquisition time of 5 s and accumulation of 10 times 
with a spectral resolution of 1.9 cm–1. The acquired image is 
30 pixels × 30 pixels (spatial resolution of 0.9 µm, 100× objec-
tive). The mean image and the spectra can be seen in Figure 
2. Note that the hyperspectral image has been limited to the 
fingerprint region, i.e. the spectral range between 675 cm–1 
and 1550 cm–1 for data analysis.

All calculations were performed in MATLAB version R2014a 
(The MathWorks, Natick, MA, USA) using the MCR–ALS 
command line code (http://mcrals.wordpress.com/download/

mcr-als-command-line/). The fuzzy clustering constraint has 
been implemented inside this MCR–ALS program.

Results and discussion
Initial exploratory analysis of the oil-in-water emulsion data 
reveals the presence of two main components, namely an 
aqueous phase and an oily phase. Additionally, we can also 
expect a third component, representing the interface between 
the two immiscible phases. This interface component can 
be important in understanding an underlying reaction taking 
place at the boundary between the two separate main compo-
nents. Exchange of information can take place and involves 
the surfactants that were added to stabilise the emulsion. The 
constitution of this interface component and thus its spec-
tral profile should be obtained free from other contributions 
so that this can be investigated. However, this phase, which 
is a minor component in the entire hyperspectral image, 
cannot be retrieved by MCR–ALS when using initial estimates 
obtained by SIMPLISMA.15 It is only revealed when performing 
a two-component MCR–ALS analysis with non-negativity and 
inspecting the structure of the residuals (results not shown). 
Applying the fuzzy clustering constraint reveals that those 
interface pixels cannot be assigned to the aqueous phase or 
the oily phase. Using this information to our advantage, three 
component MCR–ALS analyses were performed, the results 
of which are presented in this manuscript. By using just non-
negativity as a constraint during the analysis (on both C and 
ST), the results as shown in Figure 3a are obtained.

As can be seen, two main components, the oily phase and 
the aqueous phase, can be easily detected. The interface 
between these two phases can also be seen, but as it is a minor 
component, it is still mixed with contributions coming from the 
other phases. In order to improve the results obtained for the 
interface component, additional information should be given 
to the system. A possible solution would be to segment the 
data or to use a hard-clustering technique (e.g. k-means), 
but a drawback of the use of these methods is that a pixel is 

Figure 1. MCR–ALS process with a fuzzy clustering (fuzzy 
C-means) constraint. The weights, uij, obtained by the fuzzy 
clustering algorithm are used as weights on the concentration 
profiles, C, to obtain new constrained concentration profiles, Ĉ.

Figure 2. Raman hyperspectral image of an oil-in-water emulsion (30 pixels × 30 pixels × 500 spectral channels). (a) The mean image of 
the data; (b) the spectra obtained for every pixel for a range of 675–1550 cm–1.

http://mcrals.wordpress.com/download/mcr-als-command-line/
http://mcrals.wordpress.com/download/mcr-als-command-line/
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assigned to one and only one component. It is thus impossible 
to have contributions of the three different components (with 
their respective spectra) in the same pixel. It can thus be said 
that these methods are too strict for a hyperspectral image, in 
which every pixel is a mixture of the different components. An 
alternative is thus to use a fuzzy clustering approach (i.e. fuzzy 
C-means), in which a pixel can have contributions from all the 
components. The fuzzy clustering constraint was applied onto 
the interface component during the MCR–ALS analysis. The 
results obtained are shown in Figure 3b. These results show 
not only a clear improvement in the selection of the inter-

face component in the distribution map, but also that a better 
contrast in the component distribution maps for the other two 
components has been obtained (mainly visible for the aqueous 
component). The effect of the constraint is to enhance the 
contributions from pixels in which the interface component is 
strongly present and eliminate or reduce the ones from pixels 
in which the probability of presence of the interface compo-
nent is small in a stepwise way (see Figure 4).

Looking at the spectral profiles, it should be clear that the 
interface component differs from the oily phase component 
in the spectral regions between 1100 cm–1 and 1150 cm–1 and 

Figure 3. Distribution maps (intensity coded from blue to red) and spectral profiles for the components of the oil-in-water emulsion 
system (blue: oily phase, green: aqueous phase, red: interface). MCR–ALS results obtained using (a) non-negativity (LOF: 5.44%); (b) 
non-negativity and fuzzy clustering of component 3 (LOF: 5.56%).

Figure 4. Evolution of the fuzzy clustering weights of the interface component during the MCR–ALS analysis (intensity coded from blue 
to red).
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between 1300 cm–1 and 1400 cm–1, and from the aqueous phase 
component in the peak at 1100 cm–1, but mainly in intensity 
ratios, which explains why the interface is very hard to distin-
guish from the aqueous phase. Additionally, it should be clear 
from Figure 3a that when looking at the component distribu-
tion map of the interface component, several other pixels not 
belonging to the interface between the oily phase and aqueous 
phase are non-zero. That means that these pixels will be 
considered as “part of the interface” and thus influence the 
spectral profile associated with this component, leading to 
combination of the three different components. By using the 
proposed approach, we manage to gradually remove the pixels 
for which a low intensity was found (due to the clustering 
properties) as shown in Figure 3b, and obtain only the pixels 
that are truly part of the interface for this component. This 
will make the spectral profile for this component more pure 
and thus more correct (as there is no mixing anymore with the 
other components). This gradual optimisation of the compo-
nent distribution map is what is shown in Figure 4. As can be 
seen here, due to the iterative process we apply in MCR–ALS, 
the weights obtained for this interface component change with 
each least squares step. At first, lots of other contributions are 
still present but it gradually optimises its result to finding only 
the interface component. The ALS procedure does the rest.

In conclusion, using a fuzzy clustering algorithm within 
the MCR–ALS analysis helped reveal this minor component 
of the system and shows its feasibility on this type of data. 
Additionally, supplementary material, containing the appli-
cation of the fuzzy clustering approach on remote sensing 
data, is also available. It shows the feasibility of applying the 
approach not only on emulsion data, but also on other data 
where no interface components are present. For this data, 
the fuzzy approach was preferred over using k-means clus-
tering to avoid the assignment of one pixel to one and only one 
cluster as lots of overlap between the different components in 
the spatial direction was present (see Supplementary mate-
rial).

Conclusion
A continuous effort to find new constraints for the MCR–ALS 
analysis of hyperspectral images is necessary to facilitate the 
decomposition of them into their individual contributions. We 
have, therefore, implemented a fuzzy clustering constraint 
into the MCR–ALS algorithm that can be used, but not only, 
on hyperspectral images. The constraint enhances the pixels 
with a strong presence and removes contributions in which 
the probability of presence is low. We have then demonstrated 
the constraint on a hyperspectral image of an oil-in-water 
emulsion in which we successfully revealed a minor inter-
face component, apart from two main contributions, which 
was not clear before. More generally, our experience is that 
the proposed alternative is useful at the interface between 
two components, i.e. where the specific spectral signature 
observed might results from their (non-linear) interaction.16 

This includes in remote sensing, for instance, borders between 
water and soil components.

Supplementary material
This paper contains Supplementary material.
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Supplementary material
Application on remote sensing data
The constraint has been applied on several other data sets 
than the one presented above. The data tested were mainly 
oil-in-water emulsions, in order to improve the resolution 
related to the interface component, and on remote sensing 
data. An additional example of the latter is given in Figure S1, 
which consists of airborne hyperspectral imaging (HSI) data, 
obtained over Moffet Field, CA, USA.17 After an exploratory 
analysis, four different components could be distinguished, 
of which one was assigned to water and the three others are 
related to land. It is important to point out that the contribu-
tions of these different components can overlap, due to the 
presence of soil in shallow creeks or vegetation on land etc. 
That is why the application of the k-means (hard-) clustering 
method is not advised, as it leads to the assignment of a single 
pixel to one and only one cluster. We have, therefore, opted for 
a fuzzy clustering approach. As can be seen from Figure S1a, 
the MCR–ALS analysis was first carried out by only applying 
non-negativity on the component distribution maps and the 
spectral profiles [lack of fit (LOF): 4.96%]. We can see that 
there is still quite some overlap between the different compo-
nents in places where it is not expected (confirmed by using 
the raw photo of the data).

We then carried out the MCR–ALS analysis by adding fuzzy 
C-means to the pool of constraints (on component 4), as shown 
in Figure S1b. We can notice that the LOF increased slightly, 
which is expected when an additional constraint is added. This 
result shows the removal of several water contributions in 
the distribution map of the fourth component, directly leading 
to an increase in intensity in the distribution map of compo-
nent 2. Additionally, it can also be observed that by using the 
constraint on component 4, the distribution map of component 
3 is influenced, as a decrease in the intensity of the water 
contributions is also observed.

This example thus shows that a fuzzy clustering approach 
can be useful when investigating data showing lots of overlap. 
It is flexible in its usage and also has a direct impact on the 
components to which it was not applied.
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