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Leghaemoglobin content in nodules is closely related to the amount of nitrogen fixed by the legume–rhizobium symbiosis. It is, therefore, commonly 

measured in order to assess the effect of growth-promoting parameters such as fertilisation on the symbiotic nitrogen fixation efficiency of legumes. 

The cyanmethaemoglobin method is a reference method in leghaemoglobin content quantification, but this method is time-consuming, requires 

accurate and careful technical operations and uses cyanide, a toxic reagent. As a quicker, simpler and non-destructive alternative, a method based 

on near infrared (NIR) hyperspectral imaging was tested to quantify leghaemoglobin in dried nodules. Two approaches were evaluated: (i) the partial 

least squares (PLS) approach was applied to the full spectrum acquired with the hyperspectral device and (ii) the potential of multispectral imaging 

was also tested through the preselection of the most relevant wavelengths and the building of a multiple linear regression model. The PLS approach 

was tested on mean spectra acquired from samples containing several nodules and acquired separately from individual nodules. Peas (Pisum sativum 

L.) were cultivated in a greenhouse. The nodules were harvested on four different dates in order to obtain variations in leghaemoglobin content. 

The leghaemoglobin content measured with the cyanmethaemoglobin method in fresh nodules ranged between 1.4 and 4.2 mg leghaemoglobin g–1 

fresh nodule. A PLS regression model was calibrated on leghaemoglobin content measured with the reference method and mean NIR spectra of 

dried nodules acquired with a hyperspectral imaging device. On a validation dataset, the PLS model predicted the leghaemoglobin content in nodule 

samples well (R2 = 0.90, root mean square error of prediction = 0.26). The multispectral approach showed similar performance. Applied to individual 

nodules, the PLS model highlighted a wide variability of leghaemoglobin content in nodules harvested from the same plant. These results show that 

NIR hyperspectral imaging could be used as a rapid and safe method to quantify leghaemoglobin in pea nodules.
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Introduction
Legume plants can fix atmospheric nitrogen thanks to 
a symbiosis with bacteria. The leghaemoglobin protein 
is synthesised by the host plant within the cytoplasm 
of cells located in the nitrogen-fixing zone of nodules, 
the special organ of legumes that contains the nitrogen-
fixing bacteria.1,2 Leghaemoglobin has a high affinity 
with oxygen and keeps the O2 concentration in an 
optimal range to protect nitrogenase enzyme against 
oxygen damage and to supply bacterial respiration. The 
nitrogenase enzyme is contained in the nodule and trans-
forms N2 into NH3, a form of nitrogen which is meta-
bolically available for plants.1,3 In the case of pea (Pisum 
sativum L.), the bacteria involved in this transformation is 
Rhizobium leguminarosum.4,5

Leghaemoglobin in root nodules is commonly quantified 
in order to assess the effects of plant growth-promoting 
parameters [such as fertilisation or ultraviolet (UV) 
exclusion of solar radiation] on symbiotic nitrogen fixation 
efficiency.1,6,7 The concentration of leghaemoglobin 
is affected by several factors, such as the age of the 
nodules and the content of nutrients like S or N in the 
growing substrate or plant health.1,6,8 Its concentration 
in root nodules is closely correlated with the amount of 
nitrogen fixed in the association between the plant and 
the bacteria.5,9 Low leghaemoglobin content in nodules 
leads to low N2 fixation due to higher O2 concentration 
and inhibition of the nitrogenase enzyme.1,4

Common methods of leghaemoglobin quantification 
require prior extraction of leghaemoglobin from nodules 
before any possible quantification of its concentration. 
This extraction step is time-consuming, destructive and 
sensitive to operator ability and needs several chemical 
reagents. Moreover, several nodules are needed and 
leghaemoglobin quantification is, to the best of our 
knowledge, not possible in an individual nodule. Among 
the methods used to quantify leghaemoglobin, the 
most popular one is based on the cyanmethaemoglobin 
method, also used in medicine to quantify haemoglobin 
in blood. As leghaemoglobin is structurally and 
chemically similar to human haemoglobin, the 
method was transposed to legume haemoglobin as 

described by Wilson and Reisenaeur.9 The principle 
of this method is the conversion of haemoglobin into 
cyanmethaemoglobin by the addition of potassium 
cyanide and ferricyanide, whose absorbance is measured 
at 540 nm in a spectrophotometer against a standard 
solution.10 This method is considered as a reference 
method because it is accurate, cheap, sensitive to 
small variations in haemoglobin concentration, reliable, 
reproducible and requires a minimum of specialised 
equipment and reagents.9–12 Nevertheless, the 
multiple operations required in this method make it 
time-consuming and thus unsuitable for large-scale 
field studies. Furthermore, it requires accurate and 
careful technical operations, which increase the risk 
of imprecision and errors.10 Finally, this method uses 
cyanide, a toxic reagent.11

In  order to  avo id  the  l im i tat ions  of the 
cyanmethaemoglobin method in leghaemoglobin 
extraction and content measurement, the use of near 
infrared (NIR) hyperspectral imaging combined with 
chemometrics was studied as a new way to quantify 
leghaemoglobin in nodules. NIR hyperspectral imaging 
is the combination of NIR spectroscopy and imaging 
technologies. This technology provides spectral and 
spatial information simultaneously, i.e. thousands of 
spectra can be obtained for each sample and give a 
complete picture of the chemical compounds’ distribution 
at the pixel level. This technology requires the use of 
chemometrics, a chemical discipline using mathematics 
and statistics, in order to extract relevant information 
from the measurement procedures.13,14

The aim of the present study was to predict the 
leghaemoglobin concentration of nodules on the basis 
of their NIR spectra. Two approaches were evaluated. 
First, the partial least squares (PLS) approach was applied 
to the full spectrum acquired with the hyperspectral 
device. Second, the potential of multispectral analysis 
was also tested through the preselection of the most 
responsive wavelengths and the application of a multiple 
linear regression model. Both procedures were tested on 
a standard calibration–validation approach.
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Materials and method
Nodule production
To produce nodules that covered a large range of leghae-
moglobin concentrations, a dedicated protocol was estab-
lished taking into account that leghaemoglobin content in 
pea is affected by nitrogen fertilisation and varies over 
time with plant growth.6,8,15,16 Two types of fertilisation 
(no fertilisation and nitrogen fertilisation) were applied at 
seeding time of pea plants. Under both fertilisation treat-
ments, nodules were harvested at four different dates 
during plant growth. Each one of the eight treatments 
(fertilisation × harvest date) was replicated four times.

Nodules were produced in pots (20 cm in diameter, 
15 cm high) in the greenhouses of Gembloux Agro-Bio 
Tech (University of Liège, Belgium). Five pea seeds were 
sown in each pot containing field soil and sand (5 kg of 
substrate per pot with a mass ratio of ¾ field soil and ¼ 
sand). The field soil was collected in a field (loam type) 
where peas had been cultivated three months earlier to 
ensure the presence of rhizobium in the substrate. Seeds 
of the Dove variety were used. They were protected 
with WAKIL fungicide (10 % Cymoxanil, 5 % Fludioxonil 
and 17 % Metalaxyl-m). The fertiliser was applied in the 
top layer of pot soil at seeding time. Nitrate fertilisation 
consisted of one input of 0.49 g ammonitrate per pot 
(equivalent to 80 kg N ha–1). Plants were cultivated 
between 12 October and 30 November under a 24 h 
photoperiod (daylight and artificial light complement). 
Being exposed to aphids 35 days after seedling emergence, 
the plants were protected with Pirimor (50 % Pirimicarbe). 
The temperature was measured in the vicinity of the 
plants throughout their development. After germination, 
three plants were kept in each pot.

The first nodule harvest occurred 25 days after 
sowing (on 6 November). At this time, the plants had 
accumulated 500 heat units (basal temperature = 0 °C) 
and had produced seven leaves. The second harvest 
occurred when the plants had accumulated 630 heat 
units, the third after 760 heat units and the fourth after 
820 heat units, 48 days after sowing. Approximately one 
week separated each harvest.

At each harvest date, four pots were randomly selected 
in each fertilisation modality. In order to quantify plant 
development, the number of nodules present on each 
plant root system and the aerial dry biomass were 
measured. Roots were manually extracted from soil with 
tap water and nodules were separated from roots with 
tweezers. For each pot, a sample of 30 nodules was 

dried at 60 °C and then kept in ambient conditions until 
image acquisition. Other nodules were saved in falcon 
tubes, dipped in liquid nitrogen and kept at –80 °C. When 
the number of nodules harvested on a plant was below 
60, only 10 nodules were dried in order to save enough 
nodules for the chemical quantification.

Leghaemoglobin quantification
Leghaemoglobin content in frozen nodules was measured 
the day after each harvest. The assays were based on 
the cyanmethaemoglobin method described in detail by 
Wilson and Reisenauer.9 This method is based on spectro-
photometric measurement and uses Drabkin’s solution.17 
Briefly, Drabkin’s solution was prepared with 52 mg KCN, 
198 mg K8Fe(CN)6 and 1 g NaHCO3 dissolved in water and 
made up to 1000 mL. To extract leghaemoglobin, frozen 
nodules were crushed in liquid nitrogen and 100 mg of 
crushed nodules was transferred to a 2 mL centrifuge tube 
with 0.6 mL Drabkin’s solution. The mixture was centri-
fuged for 15 min at 500 × g and 4 °C. The supernatant was 
transferred to a 2 mL flask. The solid phase was extracted 
and centrifuged twice more. Supernatants were combined, 
made up to 2 mL with Drabkin’s solution and centrifuged 
for 30 min at 20,000 × g and 4 °C. Absorbance of the 
cleared supernatant was read against Drabkin’s solution in 
a 1.5 mL cell at 540 nm with a UV-visible spectrophotom-
eter (UV-1650 PC, Shimadzu, Japan).

A reference curve was computed each day of 
measurement with a sample free of haemoglobin and 
five crystalline human haemoglobin (Sigma-Aldrich 
Cat nr H7379) dilutions: 0.05, 0.1, 0.2, 0.4 and 
0.6 mg haemoglobin mL–1. Absorbance of each dilution 
was measured twice. Reference curves always had a 
regression coefficient superior to 0.99. Results were then 
expressed in milligrams of leghaemoglobin per gram of 
fresh nodules (mg g–1).

NIR spectra acquisition and preprocessing
NIR spectra of dried nodules were acquired with an NIR 
hyperspectral line scan camera combined with a conveyor 
belt (BurgerMetrics SIA, Riga, Latvia) installed at the 
Walloon Agricultural Research Centre (CRA-W, Belgium). 
The device is described in detail in Vermeulen et al.18 and 
Eylenbosch et al.19 Acquisitions were performed with 
HyperPro VB software (BurgerMetrics SIA, Riga, Latvia). 
Before image acquisition, the system was calibrated with 
a white ceramic plate (white reference) and by blocking 
the entrance of reflected light (dark reference). Bad 
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pixels were detected and removed at the same time. 
A dark reference was automatically performed before 
the acquisition of each image. One hyperspectral image 
was acquired for each nodule sample (one sample per 
growing pot) and all nodules used for the study were 
scanned on the same day.

Nodule samples were put on a conveyor belt 
progressing at 1200 µm s–1 under the camera. For each 
pixel, one spectrum of 209 wavelengths was acquired in 
the 1118–2424 nm range. Pixel resolution was 0.31 mm 
wide. One mean spectrum representative of each nodule 
sample was then computed from each hyperspectral 
image with the HyperSee software (BurgerMetrics SIA, 
Riga, Latvia). A threshold was used to segment images and 
remove background prior to mean spectra computation. 
The mean spectrum of each individual nodule was also 
computed.

In order to remove noisy regions at the beginning and 
the end of the NIR spectra, only the wavelengths between 
1432 nm and 2368 nm were kept.19 The remaining noise 
and the increasing trend observed in the mean spectra 
were removed by use of Savitzky–Golay smoothing 
(order 0, filter width 7) and detrend transformations, 
respectively. Spectra were also normalised with standard 
normal variate (SNV) transformation (Figure 1).

Linking NIR hyperspectral and multispectral 
imaging to leghaemoglobin content
For each modality (harvest date × fertilisation), the 
leghaemoglobin content and the average NIR spectrum 

from one nodule sample were kept for validation of the 
regression model. This sample was randomly selected 
among the four replicates. The remaining data were used 
for model calibration (two samples were unusable due to 
handling errors). In total 22 mean spectra were used for 
calibration and 8 others for validation.

PLS regression model construction
PLS regression was used to build a calibration model 
between the leghaemoglobin content and the NIR 
spectra of pea nodules. The number of latent variables 
was chosen in order to reduce the cross-validation clas-
sification error average. A 10-group venetian blind cross-
validation was performed.

This work was performed using the PLS Toolbox 7.8 
software (Eigenvector Research, Inc., Wenatchee, WA, 
USA) working with Matlab R2015a software (The Math 
Works, Inc., Natick, MA, USA).

Optimal wavelength selection and multiple linear 
regression fitting
Spectra acquired with hyperspectral imaging contain a 
large number of wavelengths. Most of the wavelengths 
are, therefore, likely to provide redundant information 
and make little or no contribution to the predictions. 
Identification of wavelengths carrying the maximum 
spectral information would allow the simplification of the 
model and further technology transfer to more simple 

Figure 1. Average NIR spectra of pea nodules used for PLS model calibration before (A) and after (B) preprocessing 
(Savitzky–Golay smoothing (order 0, filter width 7), detrend and SNV transformations).

BA
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acquisition systems, allowing for the implementation of 
multispectral imaging. 

The standard coefficients (b-coefficients) of the PLS 
regression were used to analyse and identify which 
wavelengths were the most significant in explaining the 
variations observed in leghaemoglobin content.20 As two 
proximal wavelengths might contain redundant informa-
tion, rather than identifying the wavelength with the 
highest score (as a positive or negative value), it was 
decided to identify the peaks in the graphs of b-coef-
ficients against wavelengths (cf. Results section). The 
wavelengths for which peaks were identified were then 
used in a multiple linear regression model to predict 
leghaemoglobin content.

Algorithms used to select the wavelengths and create 
the multiple linear regression model were developed 
using Matlab R2015a software (The Math Works, Inc., 
Natick, MA, USA).

Statistical analysis
Statistical analyses of nodule numbers, leghaemoglobin 
content and dry aerial biomass were performed with R 
software.21 Analysis of variance (ANOVA) and pairwise 
comparisons with Student–Newman–Keuls tests were 
made using the agricolae package.22

Three criteria were used to evaluate the quality of 
the models and their ability to predict leghaemoglobin 
content: root mean square error (RMSE), determination 
coefficient (R2) and the ratio of standard deviation to 
RMSE called ratio of prediction to deviation (RPD).23,24 
According to Saeys et al.,24 model predictions can be 
considered as good when the R2 value is between 0.82 
and 0.90. They are classified as good or excellent when 
the RPD values are between 2.5 and 3.0 or above 3.0, 
respectively.

Results and discussion
Pea aerial biomass and nodule development 
At each harvest date, the number of nodules on each 
plant root system and the aerial biomass were measured. 
For the statistical analysis, these measurements were 
taken per pot (three plants). Both variables were signifi-
cantly affected by accumulated heat units (p-value < 0.01, 
Table 1). The ANOVA reported no significant impact of 
nitrogen fertilisation (results not shown). Throughout the 
study, nodules of different ages and sizes were observed. 
An increase in nodule number was observed between the 
first and the second harvest; after which the number of 
nodules tended to stabilise. Aerial dry biomass increased 
with an exponential shape with accumulated heat units. 
At the end of the study, most developed plants had 13 
leaves.

The leghaemoglobin content measured in the harvested 
nodules with the cyanmethaemoglobin method was 
comprised between 1.4 mg g–1 and 4.2 mg g–1 (Table 1 
and Figure 2). These concentrations were consistent 
with those reported in previous studies.1,4 A broad range 
of leghaemoglobin content in nodules was therefore 
observed, as expected with the protocol established.

The analysis of leghaemoglobin content in pea nodules 
showed a highly significant effect (p-value < 0.001, Table 
1) of harvest time. An increase in leghaemoglobin content 
was observed between the first and third harvest. No 
statistical differences were reported between the last 
two harvest dates. Contrary to our expectations, there 
was no observable effect of nitrogen fertilisation on 
leghaemoglobin content in nodules (result not shown). 
This absence of effect could be due to the high amount of 
nitrogen already present in the growth substrate, which 
was taken from a field where peas had been grown in 

Accumulated 
heat units 
(°C-days)

Nodules Aerial dry biomass Leghaemoglobin content
Mean 

(g pot–1)
SD 

(g pot–1)
Mean 

(g pot–1)
SD 

(g pot–1)
Mean 

(mg g–1)
SD 

(mg g–1)
500 95.6 (b) 27.4 0.79 (c) 0.22 1.63 (c) 0.25
630 179.7 (a) 89.9 1.22 (bc) 0.63 2.50 (b) 0.56
760 218.3 (a) 72.5 2.03 (b) 0.75 3.42 (a) 0.48
820 216.0 (a) 58.3 4.69 (a) 1.52 3.52 (a) 0.43

Table 1. Number of nodules, aerial dry biomass production (g) and nodule leghaemoglobin content (mg g–1 fresh nodule) 
measured per growing pot (three plants) at the four harvest dates. Mean and standard deviation are presented for each harvest 
date. N-fertilised and non-fertilised plants are pooled. Mean values followed by the same letter are not significantly different 
(Student–Newman–Keuls, a = 0.05).
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the previous crop season. Furthermore, the growing 
conditions, i.e. higher temperature of the substrate due 
to the cultivation performed in pots within the green-
house, have likely increased soil mineralisation which also 
increased the nutrient content available for the plants. 
Figure 3 presents the leghaemoglobin content for the 
different harvest dates, gathering together fertilised and 
unfertilised datasets.

PLS regression
The main goal of this work was to investigate whether 
leghaemoglobin content could be predicted from average 
NIR spectra of pea nodules acquired by NIR hyperspec-
tral imaging. The first attempt was made using a PLS 
regression to link leghaemoglobin content, measured 
with the cyanmethaemoglobin method, and NIR spectra 
of the nodule. In the calibration phase, 22 nodules 
samples were used. Five latent variables were used 
to predict the leghaemoglobin content and explained 
99.98 % of leghaemoglobin variance. The first latent vari-
able explained 98.51 % of the variance.

The PLS regression showed a determination coefficient 
(R2) of 0.87 and a root mean square error of calibration 
(RMSEC) of 0.32 (Figure 3). The cross-validation of the 
PLS model gave an R2 of 0.74 and a root mean square 
error (RMSECV) of 0.45. Lower values obtained with 
cross-validation were probably due to the small number 
of samples.

The validation of the PLS model on eight samples 
gave an R2 of 0.90 and a root mean square error of 
prediction (RMSEP) of 0.27 (Figure 4). The RPD was 
3.42. Predictions were therefore classified as good.24 
The leghaemoglobin contents of the samples used 
for the validation were well predicted by the regres-
sion, and the predictions obtained from these samples 
were better than those obtained with cross-validation: 
the R2 was higher and the RMSEP was lower than the 
RMSECV. These samples were not completely inde-
pendent from those used for the regression model 
calibration because they were obtained under the 
same conditions. However, the division of samples, or 
spectra in a dataset, acquired under the same condi-
tions into calibration and validation sets is common 
in chemometric studies to estimate the potential of a 
methodology.23,25–27

Validation on single nodules
As stated in the Materials and method section, NIR 
hyperspectral imaging allows one spectrum per 
pixel to be acquired. The results obtained with the 
PLS model (PLS regression section) were based on 
the computation of an average spectrum representa-
tive of the whole sampling, i.e. a sample including all 

Figure 2. Leghaemoglobin content (mg leghaemo-
globin g–1 fresh nodule) measured with the cyanmethae-
moglobin method at each harvest time (expressed in heat 
units (°C-days) accumulated after plant sowing).

Figure 3. Calibration results of the PLS regression model 
calibrated on leghaemoglobin content measured with 
cyanmethaemoglobin method and predicted leghaemo-
globin content of nodules on the basis of their NIR spec-
tra. Results are expressed in mg leghaemoglobin g–1 fresh 
nodules. The regression was constructed on five latent 
variables. Leghaemoglobin was predicted with a RMSEC 
of 0.32 and a determination coefficient (R2) of 0.87.
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nodules harvested for each growing pot. To evaluate 
the variability within each sampling, which would make 
it possible to evaluate the leghaemoglobin content 
of individual nodules separately, we computed one 
mean spectrum per nodule within each image (using 
the information contained in all pixels related to each 
nodule of the image). The average pixel number for one 
nodule was 37 (ranging between 10 and 290 pixels per 
nodule). The PLS model was then applied to each mean 
spectrum representative of each individual nodule of 
the validation dataset. The results are presented in 
Figure 5.

The variability observed in leghaemoglobin content 
predicted from mean spectra tended to be higher 
where the measured content was greater, i.e. in nodule 
samples harvested from the oldest plants. These plants 
had nodules of different ages and diameters on their 
roots. Our observations were consistent with results 
reported for soybean by Sato et al.,16 who showed that 
plants have nodules of different diameters and that the 
leghaemoglobin content increases with the nodules’ 
diameter.

Multiple linear regression model applied to a 
restricted number of wavelengths
Figure 6 reports the b-coefficients corresponding to 
each wavelength when the PLS analysis was performed 
(here, the Matlab function plsregress was used to retrieve 
the coefficients). The graph corresponded to the results 
obtained from plotting the output of the PLS regression 
using the first component of the PLS obtained with the 
plsregress function. The percentage of variance explained 
in this case was about 71 %. As stated in the Materials 
and method section, rather than identifying the highest 
coefficients, it was decided to identify the peaks within 
the b-coefficients graph (Figure 6).

The wavelengths identified were: 1461, 1537, 1732, 
1934, 2022, 2110 and 2236 nm (Figure 7). A multiple 
linear regression model was calibrated with the absorb-
ance values measured at these wavelengths to predict 
leghaemoglobin content. The calibration displayed similar 
performances to those observed in the complete PLS 
approach, with an R2 of 0.85 and an RMSEC of 0.35.

During the validation phase, the results again revealed 
similar performances, with an R2 of 0.86 and an RMSEP 

Figure 4. Cross-validation (dark grey circles) and valida-
tion (light grey squares) results of the PLS regression 
model. Leghaemoglobin content was measured with 
cyanmethaemoglobin method and predicted on the 
basis of nodule NIR spectra. Results are expressed in 
mg leghaemoglobin g–1 fresh nodules. The regression was 
constructed on five latent variables. Leghaemoglobin was 
predicted with a RMSECV of 0.45 and a determination 
coefficient (R2) of 0.74. When the regression was applied 
to the spectra used for the validation, the RMSEP was 
0.27 and the R2 was 0.90.

Figure 5. Predicted values of leghaemoglobin on individ-
ual nodules (mg leghaemoglobin g–1 fresh nodule). Predic-
tions were made on each mean NIR spectrum computed 
for each nodule (light grey circles). Nodules were con-
tained in height samples (validation dataset). The mean 
leghaemoglobin content (dark grey squares) computed 
on the whole sample was linked with the reference value 
of leghaemoglobin (observed leghaemoglobin content) 
measured for the sample with the cyanmethaemoglobin 
method.
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of 0.33. Graphical representations were fairly similar 
to those reported when applying the complete PLS 
approach.

Not surprisingly, most of the identified wavelengths 
were linked to chemical structure containing carbon 
and nitrogen. These wavelengths are situated in the 
first overtone, the second overtone and the combina-
tion band regions of the NIR spectrum.28 Key wave-

lengths identified at 1461, 1934 and 2110 nm are 
located in the regions of N–H bonds. The 1934 nm 
wavelength is also linked to moisture.29 Wavelengths 
identified at 1732 nm and 2236 nm are located in the 
C–H bond regions.

Conclusion
This paper has proposed a new method for leghaemo-
globin quantification in dried pea nodules using NIR 
hyperspectral imaging combined with chemometrics 
as an alternative to the classical reference cyanmeth-
aemoglobin method. The PLS regression gave good 
results when the whole spectrum of pea nodules was 
used.

This PLS regression applied to the mean spectrum 
of individual nodules showed consistent results: 
nodules collected from the same plant had different 
leghaemoglobin content, due to the size and age of 
nodules, and their mean leghaemoglobin content as well 
as the variability of their leghaemoglobin content tended 
to increase with plant age.

Using the peaks identified in the b-coefficients graph 
resulting from the PLS analysis applied to the calibra-
tion dataset, seven wavelengths of interest were chosen. 
A multiple linear regression model was calibrated on 
these wavelengths to predict leghaemoglobin content. 
This simpler model gave similar results on the validation 
dataset to those of the PLS regression applied to the 
whole spectrum.

Both proposed approaches showed good correla-
tion with the reference method. However, they show 
some advantages over the reference approach: (i) 
they are quicker; (ii) they are simpler (once the model 
is calibrated, the quantification does not depend on 
operator ability); (iii) they do not involve the use of 
chemical and potentially dangerous reagents; (iv) the 
leghaemoglobin content of a single nodule can be 
predicted. Considering all these advantages and the 
first results acquired in this study, NIR hyperspec-
tral imaging and multispectral analysis have demon-
strated strong potential for evaluating the activity of 
pea nodules through the quantification of leghaemo-
globin content. They appear suited to be used within 
large-scale field studies in order to improve knowl-
edge of nitrogen fixation and protein accumulation in 
legume crops.

Figure 6. Most relevant wavelengths selected using the 
graphical representation of coefficients against the cor-
responding wavelength.

Figure 7. Identification (vertical grey lines) of the seven 
wavelengths (1461, 1537, 1732, 1934, 2022, 2110 
and 2236 nm) that were used to perform multiple linear 
regression analysis. The wavelengths of interest were 
reported on the graphical representation of the pea nod-
ule spectra used to calibrate the multiple linear regres-
sion model.
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