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The aim of our study was to test an iterative process of validation implemented in the R software, assessing the accuracy of the best selected equations, 

developed using two different regression algorithms Partial Least Square (PLS) and Bayesian. A data set (Seta) with 3187 records of 6 different types of for-

ages was used. The calibrations were tested for Protein, Neutral Detergent Fiber and Acid Detergent Fiber. For each sample a spectrum was collected using a 

FOSS NIRSystem (1100–2498 nm). A subset composed of 20 samples for each type of forage (Setext;120 samples) was randomly selected for a final validation 

of the best selected equations. The remaining samples (Setb = Seta – Setext) were used for the iterative calibration process. For each iteration the Setb was ran-

domly divided in a testing set (Settst; 10 % of Setb) and a training set (Settrn = Setb – Settst); 300 iterations were done. All of the computations were done in the 

R environment. The packages used were “pls” for the PLS, “BGLR” for the Bayesian, “prospectr” for the spectral treatments. In each iteration we used three 

spectral treatments (raw, 1 derivative, standard normal variate and detrend), two approaches for selection of the optimal number of PLS components and 

the Bayesian model. Nine types of equations were developed and tested in each iteration [(2 PLS techniques + 1 Bayesian) × 3 spectral treatments]. Among 

the 300 iterations, for each one of the 9 equation types, the best one (lowest RMSE) and the average of the best 25 % (RMSE < 1 quartile) were selected and 

validated by forage type. R has demonstrated its potential when used for the chemiometric process on big data set and with complex statistical procedures. 

R2 higher than 0.9 was obtained for almost all the calibrations. In the external validation the Bayesian models in many cases outperform the commonly used 

PLS, demonstrating that an alternative for the improvement of the prediction accuracy exists. The present work has demonstrated that iterative validation 

subsampling on big data can lead to the selection of proper equations, and it can be done using R.

Introduction
PLS is the most common regression model used for calibra-
tions and its optimization is based on cross validation. A high 
number of external validation samples is important for the 
assessment of the prediction equations, but it is not always 
possible because of the data set (e.g. not enough samples) 
or the time needed using commercial software. The impor-
tance of a robust validation for a global equation is high 
when a multiproduct data set is used. Many software pack-
ages are available for the calibration process, among these 
R1 is an open source program that gives a high variety of 
chemometric tools, included modelling packages based on 
the Bayesian approach. In recent years a new application 
of the Bayesian models for calibration was proposed.2 The 

BGLR package3 is commonly used for genomic analysis, and 
has demonstrated2 that it has high potentiality when used 
also for chemometric purposes. The aims of this work was to 
compare the PLS and Bayesian models when used to develop 
a global equation on a multiproduct data set, through an 
iterative validation process developed in R.

Materials and methods
Sample set
Samples of six types of forages were used. The total number 
of samples used was 3116 [486 samples for corn silage 
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(CSL), 1231 samples for alfalfa (HAY), 701 samples for 
haylage (HLG), 287 samples for small grain silage (SGS), 
283 samples for total mixed ration (TMR), 128 samples 
of different species from an experimental trial (PRO)]. For 
each forage type, portions of the samples were analyzed, 
by the corresponding reference methods, for Protein, 
Neutral Detergent Fiber (NDF) and Acid Detergent Fiber 
(ADF; Table 1).

For all the samples the spectra were collected using a 
FOSS NIRSystem 5000 in the range between 1100 nm 
and 2498 nm (9090–4003 cm–1) every 2 nm.

Statistical analysis
All the statistical analysis was done using the open source 
software R. Prior to data analysis the outlier spectra were 
detected using the Mahalanobis distances. The outlier 
detection was done by product and the spectra showing 
a distance higher than the mean plus three standard 
deviations were considered outliers and deleted from the 
data set.

Two regression techniques were used, the Bayesian 
model (i.e. Bayes B) implemented in the R package “BGLR” 
and the partial least square regression (PLS) implemented 
in the R package “pls”.4

The package “prospectr”5 was used for the mathe-
matical treatments of the spectra. The standard normal 
variate and detrend (snvd) and the first order derivative 
(1sgd) were used. The models were fitted also on raw 
spectra.

After the outlier detection and before the calibration 
process, 20 samples for each product (120 samples) were 
random selected as external validation set (SETEXT) and 
used for the validation of the selected equations at the 
end of an iterative process.
Iterative process of testing. The calibration was based 
on an iterative procedure, where for each round the 
data set (SETB) was divided in a training set (SETTRN) 
used to generate the equation and a testing set (SETTST) 
for a first validation and the optimization of the PLS 
components number. Three hundred iterations were 

Protein NDF ADF
N Mean (%) SD N Mean (%) SD N Mean (%) SD

CSL 477 9.25 2.40 287 49.45 8.26 477 27.41 5.04
HAY 1207 17.10 5.05 544 54.34 11.38 1209 35.15 6.42
HLG 690 17.99 4.18 490 54.23 9.16 690 38.87 5.72
SGS 280 13.60 5.17 202 58.25 9.50 282 35.47 7.54
TMR 276 12.65 4.68 65 45.05 12.65 227 23.77 10.81
PRO 119 10.59 5.08 117 66.23 7.47 119 36.15 4.55
ALL 3049 15.10 5.55 1705 54.41 10.78 3004 33.98 8.01

CSL = Corn Silage; HLG = Haylage; SGS = Small Grain Silage; TMR = Total Mixed Ration; PRO = Experimental trial of different species; ALL = 
CSL+HAY+HLG+SGS+TMR+PRO.

Table 1. Descriptive statistics.

Figure 1. Diagram of the data analysis.
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performed and for each iteration all the models were 
tested on the same TRN and TST sets. The number 
of samples included in the SETTST was 10 % of all the 
samples (Figure 1).
Bayesian model. The Bayes B (BB) model implemented 
in the “BGLR” package of R was used. A detailed 
description of the model and algorithms can be found in 
Pérez and de los Campos6 as well as the default param-
eters used. As example for the application of BGLR for 
infrared calibration can be found in Ferragina et al.2 A 
low number of Bayesian iterations and burn-in were 
used, 15,000 and 5000, respectively.
PLS. The PLS was fitted using the statement “plsr” 
included in the package “pls”. The maximum number of 
principal components tested in each PLS was 20, and 10 
cross-validation segments were used.

The plsr gives as result a number of equations equal 
to the maximum number of principal components 
tested, thus, the choice of the optimum number of 
principal components (ONPC) was done applying 
each equation on the SETTST and calculating for each 
one of the 20 equations the root mean squared error 
of validation (RMSETST) and using two intuitive algo-
rithms (a and b). The algorithms were both based on 
a penalization system where the choice of increasing 
the number of the components was done according 
to the RMSETST.

The first choice of the ONPC (a) was done according to 
the first component. The RMSETST of all the components 
were penalized and compared with that of the first. The 
first algorithm was specified as follow:

1 1TST TSTRMSE RMSE
i

Dif
+

= -

1TST
% RMSE

100
pen iPen

æ ö´ ÷ç= ´÷ç ÷÷çè ø

Vet = TRUE for Dif > Pen and Vet = FALSE for Dif < Pen

where 
1TSTRMSE  is the RMSETST for the equation of the 

first component; i = 1, …, 19; %pen is the percentage of 
penalization (5 %); Vet is a logical vector of dimension i + 1 
(20), where at position 1 Vet = True. The ONPC was the 
highest dimension of TRUE in the vector Vet.

The second algorithm (b) was based on the comparison 
of the RMSETST of each equation with the next. In the 
second case the algorithm was specified as follows:

1TST TSTRMSE RMSE
i i

Dif
+

= -

TST
% RMSE
100 i

penPen
æ ö÷ç= ´÷ç ÷÷çè ø

Vet = TRUE for Dif > Pen and Vet = FALSE for Dif < Pen

where TSTRMSE
i
 is the RMSETST for the equation of the ith 

component; i = 1, …, 19; %pen is the percentage of penal-
ization (5 %); Vet is a logical vector of dimension i + 1 (20) 
(with TRUE for the first component). The ONPC was the 
highest dimension of TRUE in the vector Vet.
External validation. For each model 300 equations 
were generated (2700 equations for each trait), and 
among these the equation with the lowest RMSETST and 
those included in the first quartile of the RMSETST were 
selected and used to predict the samples in the SETEXT. 
The predictions obtained using the first quartile equa-
tions for each sample of the SETEXT were averaged. The 
R2 and RMSE were calculated.

Results and discussion
In Table 1 the descriptive statistics by product are 
reported. The number of samples for each product was 
not balanced and a big variability was shown for all the 
traits among products.

The prediction results obtained in the iteration process 
are reported in Table 2. The R2

TST and RMSETST shown 
are the average of the 300 equations tested for each 
model. High R2

TST values were found in validation for all 
the predicted traits. The R2

TST was similar for almost all 
the models. According with the RMSETST the PLS gave 
the best results for all the traits, ranging from 0.77 (PLS, 
a, 1sgd) to 4.92 (BB, raw) for protein, from 2.58 (PLS, a, 
1sgd) to 14.65 (BB, raw) for NDF, from 1.66 (PLS, a snvd) 
to 12.76 (BB, raw) for ADF. On average the PLS b uses a 
lower ONPC, and the total explained variance near 100 % 
for both the PLS (data not shown). An important effect of 
the spectra treatment was shown on the BB, were the 
error was drastically reduced by implementing spectral 
treatments.

Among all the equations, the one with a lower RMSETST, 
and the equations with a RMSETST in the first quar-
tile were selected and validated on the external set by 
product. When the equations of the first quartile were 
used, the predictions were averaged. Only the results of 
the external validation for all the products together are 
reported in Table 3.
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The selection of the best equations gives a lower RMSE 
respect to the RMSETST, and in general no big differences 
were found among the results of the lower RMSE equa-
tion and the first RMSE quartile equations. Among PLS 
and BB no big differences were found, furthermore in 
many cases BB outperform PLS comparing the results of 
the single products (data not shown).

In Figure 2 an example of the estimated coefficients of 
PLS and BB, and the correlation among the trait (NDF) 
and each wavelength are shown. In general the coef-
ficients do not follow the correlation trend as could be 
expected. The estimated coefficients of PLS are highly 
represented along all the spectral range with homog-
enous peaks. Differently, the effect of the variable selec-

tion of BB, tends to select important groups of coeffi-
cients reducing the others toward zero.

Conclusions
R has demonstrated its potentiality when used for the 
chemometric process on big data set and with complex 
statistical procedures. In the external validation the 
Bayesian models outperform PLS, demonstrating that an 
alternative for the improvement of the prediction accuracy 
exists. The present work has demonstrated that iterative 
validation subsampling on big data can lead to the selec-
tion of proper equations, and it can easily be done using R.

Model Treatment
Protein NDF ADF

R2
TST RMSETST R2

TST RMSETST R2
TST RMSETST

PLS a, raw 0.98 0.85 0.93 2.86 0.93 2.13
PLS a, 1sgd 0.98 0.77 0.94 2.58 0.96 1.69
PLS a, snvd 0.98 0.79 0.94 2.60 0.96 1.66
PLS b, raw 0.97 0.93 0.93 2.93 0.94 1.97
PLS b, 1sgd 0.98 0.87 0.93 2.73 0.95 1.80
PLS b, snvd 0.97 0.89 0.94 2.70 0.95 1.69
BB raw 0.91 4.92 0.70 14.65 0.69 12.76
BB 1sgd 0.97 1.95 0.93 4.78 0.94 3.90
BB snvd 0.95 3.12 0.89 7.37 0.87 6.75

R2
TST and RMSETST = average of the 300 iterations.

Table 2. Fitting statistics of validation in the iteration process.

Figure 2. Absolute values of estimated coefficients for PLS (green line) and Bayes B (red line), and correlation of NDF and 
absorbances by wavelength (dashed curve).
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