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A novel all-fibre spectrometer with theoretical advantages for industrial process measurements was tested on simulated process samples of water with 

sucrose. The spectrometer uses the dispersive Fourier transform method and combines a supercontinuum laser with a time-wavelength separating optical 

fibre. Multivariate curve resolution was used to resolve the pure spectra and concentration profiles of sucrose and water from spectra of solutions with 

both constituents. The new spectrometer has great potential for rapid and vibration-robust measurements, but further studies are needed to determine its 

performance on more complex and real process samples.

Introduction
Rapid and robust multivariate measurements are some of 
the most desired properties for process instruments. A novel 
spectroscopic method named “dispersive Fourier transform” 
has recently been pushing the limit of measurement speed.1,2 
The principle behind dispersive Fourier transform is a poly-
chromatic pulsed light source that is directed through an 
element that separates the different wavelengths in exit 
time. The signal can then be transformed from the time-
domain into the frequency domain to provide a spectrum. 
A typical element used to separate the wavelengths in time 
is an optical fibre. The applied light source can be a pulsed 
supercontinuum, which is commonly produced by guiding 
intense light through photonic crystal fibres.3 An “all-fibre 
spectrometer” can, therefore, be constructed by combining 
a dispersive optical fibre with a supercontinuum fibre laser 
resulting in an instrument with no moving parts that is insen-
sitive to vibrations and has the potential for extremely rapid 
pulsed measurements. Currently there are no commercial 
spectrometers applying the dispersive Fourier transform 

method and the theoretical advantages have, therefore, not 
been studied and exploited in an industrial context.

The measurement of carbohydrates in the food industry 
is important in terms of analysing product variations as 
well as following processes such as, for example, fermenta-
tions. The common food ingredient “table sugar” or sucrose 
(β-d-fructofuranosyl-α-d-glucopyranoside) is a central 
component in a wide range of food products, and near 
infrared (NIR) spectroscopy has been used in several cases 
to measure the sucrose content such as, for instance, in 
sugar beets,4 coffee roasting5 and sugar cane juice for the 
alcohol industry.6 In the present study, the performance of 
an in-house built dispersive Fourier transform NIR spectrom-
eter was tested on mixtures of water with sucrose. This was 
performed in order to test the spectral quality of a simulated 
industrial process measured with a dispersive Fourier trans-
form spectrometer. The resulting spectra were analysed with 
Principal Component Analysis (PCA) to visualise the spectral 
changes on a large range of sucrose concentrations. In addi-
tion, Multivariate Curve Resolution (MCR) was applied in 
order to investigate the quality of the NIR spectra and to 
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demonstrate separation of the pure spectrum of water 
from the pure spectrum of sucrose, as MCR in previous 
studies has shown a large potential in process monitoring 
of milk lactic acid fermentation7 and alcohol fermenta-
tion measured with NIR spectroscopy.8,9

Methods

Samples
One sample of Milli-Q® water and 51 samples of Milli-Q® 
water with sucrose from 5 % to 55 % (w/w) in 1 % intervals 
were prepared. In addition, 23 replicates evenly distrib-
uted from 5 % to 55 % (w/w) sucrose were prepared 
giving a total of 75 samples. Water was purified using 
a Milli-Q® filter system. The sucrose used was BioUltra 
grade (>99.5 %, Sigma Aldrich, Darmstadt, Germany).

Spectrometer setup
The spectrometer setup is shown in Figure 1. The light 
source is a pulsed, supercontinuum laser source (SuperK 
COMPACT, NKT Photonics, Birkerød, Denmark) emitting 
400–2500 nm pulses of approximately 1 ns duration and 
operated at 20 kHz repetition rate. Its output is directed 
into 10 km of a custom dispersion compensating silica 
fibre (ll micro, OFS Fitel, Norcross, Georgia, USA). The 
attenuation profile of the fibre results in loss of light 
outside the utilised 1100–1700 nm window because of 
increasing Rayleigh scattering at shorter wavelengths 
and a higher absorbance from silica at longer wave-
lengths. The fibre dispersion profile delays the prop-
agation of shorter compared to that of longer wave-
lengths, resulting in stretching the 1 ns input pulse to 
an approximately 600 ns output pulse. The wavelengths 
towards 1700 nm travel faster through the dispersion 
compensating silica fibre compared to the shorter wave-
lengths towards 1100 nm. The fibre output is collimated 
using an off-axis parabolic mirror (PM) (RC08PC-P01, 
Thorlabs, Mölndal, Sweden) and directed to a 50 : 50 
beam splitter (BSW29, Thorlabs, Mölndal, Sweden). Of 
the two outgoing beams from the beamsplitter, one is 
directed onto the sample and then to an InGaAs detector 
(PDA10CF-EC, Thorlabs, Mölndal, Sweden). The other 
beam is measured by an identical second detector func-
tioning as a reference. The light is split in two in order to 
correct for the pulse-to-pulse intensity variations in the 
supercontinuum generation process.10 A pulse-to-pulse 

normalisation is, therefore, performed by dividing the 
signal from the sample detector with the signal from the 
reference detector. The beamsplitter was set with a small 
angle (approximately 20 ᵒ) between the incoming beam 
and the reference beam in order to avoid dependence on 
polarisation.11 Both analogue electrical signal outputs are 
captured in parallel by a digital oscilloscope (PicoScope 
5444B, Picotech, Cambridgeshire, UK) with acquisition 
synchronised with the laser source’s output trigger signal. 
In the spectrometer, each scan is the average signal 
of 2000 sample and reference pulse pairs. In order to 
improve the signal-to-noise ratio, 36 scans are averaged 
which gives a total of 36 × 2000 × 2 = 144,000 pulses 
per spectrum. The total measurement time was 16 s per 
spectrum. Currently the spectrometer is measuring only 
every fourth pulse because of the oscilloscope’s re-arm 
time. This means that spectra with the same signal-to-
noise ratio could be acquired within 4 s by using an oscil-
loscope with a sufficiently fast re-arm time. Spectra are 
acquired, averaged and processed using in-house built 
Python-scripted software.

The transformation from a time-domain into a 
frequency-domain was done experimentally by meas-
uring five narrow optical band pass filters. The optical 
filters had a centre wavelength accuracy ± 2–2.4 nm 
and a full width at half maximum (FWHM) accuracy of 
± 10–12 nm. The five filter measurements were fitted 
with a third-degree polynomial, as shown in Figure 1B, to 
achieve the coefficients for transformation from time to 
frequency domain. After transforming the data into the 
frequency domain, then the interval between measure-
ment points is not equidistant. The spectral sampling 
resolution is 3.9 nm and 6.7 nm at 1700 nm and 1100 nm, 
respectively.

The absorbance was calculated as –log10(IS/I0) where I0 
is the light intensity with an empty cuvette in the sample 
holder and IS is the light intensity with a cuvette with 
sample inserted in the sample holder. The cuvette had 
a path length of 1 mm. All samples were measured in 
random order.

PCA and MCR
In a PCA,12 the variance in a two-way dataset X with 
I rows (I = 1,…,I) for samples and J columns (j = 1,…,J) 
for variables can be decomposed into F components 
(f = 1,…,F) into the bi-linear model:

	 X = TPT + E	 (1)
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with the least-squares solution
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where the sample scores T (size I × F) is the projection of 
variance onto the variable loadings P (size J × F) using F 
components.

Self-modelling curve resolution or Multivariate Curve 
Resolution (MCR)13,14 is similar to PCA in that it is a 
bilinear model used to decompose data into its structural 
parts. Where PCA decomposes the data into sequentially 
decreasing orders of variance, MCR fits F number of 
bilinear components simultaneously into a set of concen-
tration profiles C (size I × F) and pure spectral profiles S 
(size J × F) for a dataset X (size I × J).

	 X = CST + E	 (3)

Using alternating least squares15 (MCR-ALS) both 
concentration profiles (C) and pure spectral profiles (S) 
are optimised simultaneously in an iterative cycle. The 
challenges with MCR-ALS are its dependence on the 
initial guess of S or C, its slow convergence, its depend-
ence on independent variations amongst the constitu-
ents and its ambiguity in the solution. The strength of 
MCR-ALS is its capacity to resolve the pure underlying 
spectra and the ease with which different constraints can 
be applied. Imposing constraints can help in decreasing 
the risk of ambiguities and in this work a non-negativity 
constraint in the spectral mode have been used which 
is a realistic assumption for a chemical system observed 

by NIR spectroscopy. The MCR-ALS was initialised using 
random initial S and continued using a non-negative 
constraint on S. ALS iterations were performed until 
convergence was detected as the RMSE change dropping 
below 1e–12. The MCR model was applied to the spec-
tral region 1151–1668 nm.

Data treatment
Peak positions were investigated by calculating the 
Savitzky–Golay second derivative spectra16 (second 
degree polynomial, window size 9) in the PLS toolbox. 
Initial investigation of the dataset was conducted 
using PCA, and was carried out in the PLS toolbox 7.5 
(Eigenvector Research, Inc., Manson, WA, USA) on 
mean centred spectral data. The MCR models were built 
using an in-house toolbox running in MATLAB R2015b 
(MathWorks Inc., Natick, MA, USA). Raw/non-processed 
spectra were used for MCR-ALS.

Results
The raw spectra in Figure 2A and the second derivative 
spectra in Figure 2B show that when the sucrose concen-
trations increase, the first overtone of OH stretching at 
about 1450 nm decreases, which is also the case for the 
OH combination band at 1151 nm.17 In contrast, the 
band at about 1566 nm, originating from intramolecu-
larly hydrogen-bonded OH and the first overtone band 
at 1689 nm, originating from CH stretching increase 

Figure 1. (A) Spectrometer setup with an off-axis parabolic mirror (PM), a beam splitter (BS), lenses (L), 
photonic crystal fibre (Fibre1) and dispersion compensating silica fibre (Fibre2). (B) Calibration of the 
transformation from time to frequency domain.
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together with higher sucrose concentrations.17 In addi-
tion, the absorbance peak seen in the raw spectra at 
around 1450 nm and the valley in the second derivative 
spectra at 1408 nm shifts to longer wavelengths by the 
addition of more sucrose.

MCR was applied to the spectra in order to investigate 
the quality of the spectra and to study if it is possible 
to separate the spectral contribution from sucrose and 
water. Using PCA, it was determined that the system was 
sufficiently explained using two principal components, 
and thus is of rank two. The first two components showed 
significantly higher contributions which agrees with the 
fact that the chemical system is binary, i.e. contains only 
two ingredients. The two-component MCR solution 
consistently showed the same solution independent of 

the random initialisation. The resulting pure spectra and 
related concentration profile is shown in Figure 2, and 
the model explains 99.99 % of the spectral variance. The 
first overtone OH stretching of the pure spectrum of 
sucrose (Ssucrose), represented by the red line in Figure 
2C, displays a shift towards longer wavelengths in peak 
maxima compared to the pure spectrum of water (Swater). 
This basically reflects that the sucrose hydroxyl groups 
are participating (on average) in more hydrogen bonds 
and that the donor-H bonding strength is weakened 
and thus the vibrational frequency is lowered (the wave-
lengths are increased). Furthermore, the pure spectrum 
of sucrose (Ssucrose) has a higher intensity from 1500 nm 
to 1668 nm compared to the pure spectrum of water. 
This is due to first overtones of the CH stretching vibra-

Figure 2. (A) Raw spectra coloured according to sucrose % (w/w). (B) Savitzky–Golay 
second derivative spectra (second degree polynomial, window size 9) coloured according 
to sucrose % (w/w). (C) MCR pure component spectra. (D) MCR concentration profiles 
normalised to water = 100 %.
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tions from the CH connected to primary and secondary 
hydroxyl groups in the sucrose structure. The concentra-
tion profile of sucrose (Csucrose) in Figure 2D follows the 
expected change from 0 % to 55 % which strengthens the 
validity of the results. The residual (E) for each variable 
and sample in Figure 3 shows what is not included in the 
MCR model. The random pattern of the sample residuals 
is interpreted as the uncertainties that are present in all 
experimental measurements. A more systematic pattern 
is seen in the variable residuals in Figure 3A by a peak at 
1400 nm and 1600 nm. The peak at 1400 nm might be 
due to changes in temperature,18 since the early stage 
of this spectrometer did not include any temperature 
control. The peak at 1600 nm is exactly in the wavelength 
range of the CH stretching vibrations and might be inter-
preted as an interaction between water and sucrose 
that results in a very small contribution of 5 × 10–6. A 
non-linear effect with changing sucrose concentration 

in water–sucrose solutions has previously been inves-
tigated with Raman19 and NIR20 spectroscopy. The 
previous studies interpreted the non-linear behaviour 
as changes in the hydrogen bonding caused by sucrose 
behaving as a structure breaker at lower concentrations 
and as a structure maker at higher concentrations. In 
the studies by Mathlouthi et al.19 and Giangiacomo20 it 
was hypothesised that, at a certain sucrose percentage, 
there is a sudden change in the hydrogen bonding. This 
study measured samples with a much smaller interval of 
1 % (w/w) sucrose concentrations compared to the two 
previous studies that used intervals of 5–10 % sucrose 
(w/w). The first principal component (PC) from a PCA 
model showed a non-linear decrease when plotted 
against the sucrose % (w/w) and the non-linear decrease 
was even clearer when plotted against the sucrose mole 
fraction % (Figure 4). From Figure 4A it, therefore, seems 
likely that there is a non-linear interaction between water 

Figure 3. Mean residuals for the MCR model for (A) each wavelength and (B) each sample.

Figure 4. PCA model. (A) PC1 versus sucrose mole fraction. (B) PC1 loading.
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and sucrose and this might be the reason why the MCR 
model does not capture the residual at 1600 nm.

The quality of spectra can be evaluated by the useful 
chemical information versus the noise. In this study, the 
chemical variance captured by the MCR model was used 
to determine the noise level which in this case was on the 
order of 99.99 %. Thus, just 0.01 % noise was rejected by 
the model system.

Outreach
The use of a supercontinuum light source together with a 
wavelength separating fibre can provide a vibration insen-
sitive and fast spectrometer. This paper shows the proof 
of principle and first results of the all-fibre instrument. 
The all-fibre instrument developed for this study has a 
spectral range from 1100 nm to 1700 nm, which gives 
a spectral window (the so-called first overtone region) 
with information on all major food components, namely 
carbohydrates, fats, proteins and water. The spectrom-
eter is still in a very early stage and many improvements, 
such as increasing the measurement speed, resolution 
and spectral range, may be possible in the near future. 
The potential of this spectrometer has been shown for 
a controlled laboratory experiment and more industrial 
tests have to be performed in order to appreciate the full 
potential of this new method.
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