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Introduction
Near infrared spectral measurements of tissue and biofluids are very complex. In biofluids diffuse 
scattering results in unknown pathlengths through the sample. Likewise, for tissue, when physical 
structure is added on top of pathlength variations, understanding the relationship of measured 
spectral response with underlying physiological process is unclear. In general, modelling is 
difficult since some of the properties are well known while others are not. Self-modelling curve 
resolution (SMCR) provides a means by which some knowledge of a system can be included, and 
iterations with the measured data used, to find a self-consistent model of the underlying processes. 
In the work presented we will show how SMCR can be used to obtain better quantification of 
underlying constituents in tissue, together with gaining a better understanding of the measure-
ment process. In particular, a method for adaptive modelling of spectra from tissue for myoglobin 
oxygen saturation will be shown. Likewise, examples of where SMCR can be used to obtain infor-
mation about a physical process from non-scattering fluids inside a scattering sample are shown.

Background
Self-Modelling Curve Resolution, also known as Multivariate Curve Resolution is a data analysis 
tool which seeks to determine the underlying constituents and their concentrations in a mixture 
from a set of multivariate measurements, where these constituents change concentration. The first 
description of this technique dates from work of Lawton and Sylvester in the 1970’s.1 During the 
last 30 years, many refinements of the original work have been made to provide a more robust esti-
mate of the constituents. These techniques have been successfully used for both dual component,1–3 
where unique solutions are possible, as well as multi-component analyses, where solutions are 
not unique and constraints must be used.4–8 One member of the SMCR family is alternating 
least-squares multivariate curve resolution (ALS), based on a series of alternating least squares  
estimates of composition and spectral components.6 Constraints are used to isolate the chemical 
components mathematically, by providing boundaries to limit the possible solutions. Constraints 
typically used in SMCR algorithms include closure, non-negativity, selectivity, normalisation, and 
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equality. Spectral data are normally assumed to be non-negative, as are chemical concentrations. 
However, in tissue spectroscopy, second derivatives are commonly taken as a data pre-treatment 
step. When derivatives are taken, spectral intensities can assume negative values and non- 
negativity cannot be used as a constraint. Likewise, concentration closure is no longer applicable 
when spectral backgrounds are subtracted, because some spectral contribution from each species 
may be lost. Pre-processing steps must be carefully selected to ensure that constraints chosen for 
the SMCR remain applicable.

Materials and methods
In one study, a non-invasive method is developed for analyte quantification in fluids surrounded 
by optically scattering, opaque walls, such as cerebral spinal fluid behind the skull. To simulate 
a skull phantom in the laboratory, samples consisted of two distinct layers with details given 
elsewhere.9 The first layer had a fixed scattering level, while the second had a variable absorption 
level. The scattering layer consisted of 1% Intralipid-20 (Fresenius Kabi AB, Uppsala, Sweden) 
diluted in water, corresponding to a scattering coefficient of approximately 0.95 mm–1. Absorbing 
samples were made by diluting a dye (Dr. Ph. Martin’s Juniper Green 12A, Salis International, 
Hollywood, USA) in water, allowing for a range in absorption coefficient values from 0 to 0.05 
mm–1. A total of 8 absorbing samples were measured in triplicate. A skull phantom was made 

Figure 1. Experimental configuration used to study evanescent field effect within a non-scattering sample 
obscured by a scattering layer of variable thickness.
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where the sample cell was divided into two portions: an outer part holding the scattering sample, 
and an inner compartment holding the absorbing sample. The inner sample cell was attached to 
a translation stage. This permitted it to be moved forward and backward within the outer sample 
cell, allowing the thickness of the scattering layer to be easily changed during the experiment. 
Thicknesses were varied from 1 to 8 mm in steps of 1 mm. Diffuse reflectance measurements 
were acquired as shown in Figure 1, using one dimension of a 640 × 480 detector array of a Sony 
XCD-V50 camera (Sony Corp., Japan) having a 14-bit dynamic range.

Signals measured by the detector contain an evanescent field component, which originates 
from many interactions of the multiply scattered light at the boundary between the scattering and 
absorbing layer. Examples of the imaging measurements are shown in Figure 2.

The profiles are relatively monotonic, which makes it difficult to discern different contrib-
uting components in the data. However, the SMCR approach was used to estimate both analyte 
concentration and scattering layer thickness between 1 mm and 8 mm of the subsequent images. 
In a second study, the SMCR technique was compared with a classical least squares method for 
estimation of myoglobin oxygen saturation in simulated and biological cardiac tissue. Tissue 
simulations with fixed and variable haemoglobin concentrations were examined to compare the 
performance of the techniques under different conditions. Likewise, myoglobin oxygen satura-
tion endpoints in 7 guinea pig hearts were estimated from spectra using SMCR and classical 

Figure 2. Intensity profiles depicting the effect of absorber variation for scattering layer thicknesses of (a) 
1 mm and (b) 8 mm.
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least squares (CLS). Spectra of cardiac tissue were collected as previously described in detail.10,11 
Briefly, optical spectroscopic measurements of guinea pig hearts (n = 7) were recorded between 
450 and 950 nm. Excised hearts were perfused with red blood cells at 5% hematocrit under condi-
tions of varying oxygen saturation according to the Langendorff method. Diffuse reflectance 
spectra were recorded from the left ventricular wall using a custom bifurcated fibre-optic probe 
having a 1.75 mm separation between source and detector fibres. Spectra were recorded for each 
excised heart while oxygen saturation of the blood was controlled using a gas-exchange perfusion 
system to control the oxygen, nitrogen and carbon dioxide concentrations. Maximum myoglobin 
oxygen saturation was produced experimentally by perfusion with oxygenated buffer, infusion 
of adenosine to maximally vasodilate the coronary arteries, and infusion of potassium chloride 
to arrest the heart and thus lower myocardial oxygen consumption. Maximal deoxygenation was 
produced by infusion of sodium dithionite (Na2SO4) at the end of each experiment.

Results and discussion
For the first study, systematic variations were observed in signals when both analyte concentration 
and scatterer thickness were varied for an underlying absorbing fluid behind a scattering layer, as 
would be consistent with measurements through a skull. Acquired signals were processed using 
SMCR, which provided both qualitative and quantitative information about the system. Data was 
shown to be composed of two components using PCA where 99% of the variance is described. 
For a two component system a unique SMCR estimate of the components is possible. Results of 
the components are shown in Figure 3. 

One component was related to scattering processes in the phantom while another was related 
to evanescent absorption effects of light trapped within the scattering layer. The first scattering 
component had a large effect at close source/detector separations, whereas the evanescent compo-
nent exhibited a peak maximum at larger separations. This information was able to guide further 
analysis towards regions where maximum signal could be obtained. Diffuse reflectance measure-
ments were also able to provide accurate estimates of scattering layer thicknesses. Likewise, by 
using the evanescent field effects, good estimation of the absorbing layer hidden behind a highly 
scattering layer was obtained. In the current configuration, the experimental approach is not 
complex and can be adapted to a wide range of areas for the analysis of a multitude of samples 
such as in-vivo analyses of cerebrospinal fluid.

In the second study, myoglobin saturation estimates using SMCR with variable haemoglobin 
composition were shown to decrease estimation error considerably compared to least squares 
estimates. For simulated tissue spectra results shown in Figure 4, much better estimate myoglobin 
saturation using SMCR as compared to classical least squares.

Variation about the line of identity for the SMCR estimates are less than 75% of results using 
classical least squares, even when the endpoint is scaled to a maximum value of 100% saturation. 
Use of the SMCR method requires that there is measurable variation from each component. In a 
normally oxygenated heart, the oxygen saturation is approximately 100%. The range of myoglobin 
saturation required for SMCR to function relative to 100% was examined. Results show that the 
spectral data set must include myoglobin saturation values that vary from at least 85% to 100% 
for accurate myoglobin oxygen saturation calibration using SMCR. Exact measurements of inter-
mediate oxygen saturations in vivo are difficult; however tissue can be manipulated to achieve 
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fully saturated (100%) and desaturated (0%) conditions. Results for myoglobin oxygen saturation 
endpoints in the guinea pig hearts showed saturation estimates using SMCR to be better than 
estimates using classical least squares. Endpoints at the 100% level were estimated to be 94.3 +/–  
5.6% using SMCR as compared to 179 +/– 27% using classical least squares. Endpoints at 0% 
oxygen concentration were estimated to be 2.3 +/– 1.6% using SMCR as compared to 18 +/– 4.3% 
using classical least squares. SMCR provides a means for practical measurements in clinical 
settings.

Figure 3. SMCR results showing (a) the scattering and evanescent component profiles and (b) the correlation 
between the scores associated with these components.

Figure 4. Myoglobin oxygen saturation estimation of tissue phantom spectra using both classical least 
squares and self modeling curve resolution approach.
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Conclusion
In general, the SMCR approach is a useful tool for analysis of near infrared spectral measure-
ments and provides added insight into the composition and processes of the biomedical problem 
inves tigated. As shown in the scattering measurement, sample properties of underlying chromo-
phores can still be estimated at relatively large scattering layer thicknesses. Results suggest that 
low esti mation errors could be achieved when probing tissue samples as thick as 10 mm. Likewise, 
using spectral measurements, myoglobin oxygen saturation in tissue can be estimated without 
recording endpoint spectra for calibration. Suitable oxygen saturation ranges should be possible 
under normal physiological conditions through manipulations of inspired oxygen content. Overall, 
this work is quite encouraging, and has useful applications in a variety of medical settings.
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