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Introduction
Derivatives of spectra sometimes play a key role in improving prediction performance of  
NIR spectroscopy. Although the order of traditional derivatives is practically limited to one and  
two, it can be extended to any positive number ν by means of scaling filtering in the Fourier domain,  
which leads to a fractional derivative (FD).1 Shift and inversion of peaks associated with first, 
second and fractional derivatives sometimes make it difficult to identify the exact wavelengths 
of absorption peaks. Such unfavorable deformation can be suppressed by employing a frac-
tional absolute derivative (FAD).1 It was shown that FD and FAD give rise to better prediction 
performance when an adequate derivative order ν  is chosen.2 As ν  increases, however, FD and 
FAD spectra gradually get complicated, growing finer new peaks, the mutual relations of which 
become also complicated. In this paper, generalised two-dimensional (2D) correlation spectra are 
investigated for examining correlation properties within and among raw, FD and FAD spectra, 
by introducing a new approach to extract 2D correlation peaks that are correlated with individual 
constituents.

Materials and methods
Samples and data
NIR spectra of 1100–2500 nm with a 2 nm interval, and chemical values for moisture, amylose 
and protein concentrations were obtained from 31 samples of rice flour in different varieties. From 
the spectra, FDs and FADs of various orders ν were calculated after MSC pretreatment using 
MATLAB, from which 2D correlation spectra of several different types were calculated. The raw 
spectra after the MSC pretreatment are denoted by S(λ) in the following.
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Fractional and fractional absolute derivatives
FD of order ν of a function f(λ) is denoted and defined by1

	 ( ) ( )( 2 ) exp( 2 )
∞ν ν

λ −∞
λ = µ πµ πµλ µ∫D f F i i d ,	 (1)

where F(µ) is the Fourier transform of f (λ). This is an extension of the ordinary derivative to that 
with an arbitrary positive order ν. As a modification of FD, FAD is denoted and defined by1

	
D f F i d( ) ( ) 2 exp( 2 )

∞ νν
λ −∞

λ = µ πµ πµλ µ∫ ,	 (2)

which provides completely non-shifted derivative peaks. As is in ordinary derivatives, FD and 
FAD defined in Equations (1) and (2) suffer from high-frequency noises as ν increases. To 
suppress them, a Gaussian low-pass filter is actually inserted in the integrands in Equations (1) 
and (2).

Two-dimensional correlation analysis
Generalised 2D correlation spectroscopy is a powerful tool for analysing correlation properties 
between same or different spectra at different wavelengths.3 The 2D correlation spectrum of 
spectra A(λ) and B(λ) are defined by

	 1 2 1 2( , ) ( , ) ( , )λ λ = ∆ λ ∆ λR A t B t ,	 (3)

where ∆ A = A − 〈A〉 and ∆ B = B − 〈B〉, and 〈 〉 stands for an average with respect to an external vari-
able t. Since we do not use any controllable external variable in this paper, however, we omit it 
and regard 〈 〉 as an average over samples. In this case, the 2D spectrum of Equation (3) expresses 
overall correlations reflecting variations of all the constituents in the samples.

In many cases in NIR spectroscopy, 2D correlation peaks are required that reflect correla-
tions exclusively with a certain target constituent. Though it is possible to employ the constituent 
concentration as the external perturbation variable to this end,4 a relatively large number of 
samples are needed. As an alternative approach, we consider correlations of a higher order. The 
first idea would be the third order correlation involving the concentration p of a constituent of 
interest:

	 3 1 2 1 2( , ) ( ) ( )λ λ = ∆ λ ∆ λ ∆R A B p ,	 (4)

where ∆ p = p − 〈 p〉. This function seems to have high values where the three variables vary all 
in phase. In reality, however, this is not the case, as seen from the fact that any odd order moment 
of zero-mean Gaussian variate vanishes. Let us consider then the fourth order correlation of the 
form of

	
2

4 1 2 1 2( , ) ( ) ( )( )λ λ = ∆ λ ∆ λ ∆R A B p . 	 (5)

We also discuss normalised versions of 2D correlation spectra in Equations (3)−(5) defined as
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Figure 1. Correlation R(λ1, λ2) of raw and 0.6th order FD spectra.
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Results and discussion
Figure 1 shows a generalised 2D correlation spectrum R(λ1, λ2) of raw spectra S(λ) (x-axis) 
and FD spectra of 0.6th order (y-axis), which is denoted here by 0.6

1 2 2 1( , ) : ( ) ( )λλ λ λ − λR D S S , or 
0.6: λ −R D S S for short.

A strong quasi-autopeak appears at 1900−2030 nm due to a strong absorption peak in this 
region. The term “quasi-” is used because the peak is separated slightly in λ2 direction and 
deformed from the autopeak as it would be without differentiation by λ2. The shape of this quasi-
autopeak expresses how the correlation is deformed and separated by fractional differentiation. 
Figure 2 shows a FAD version of Figure 1, 0.6: λ −R D S S.

Figure 2. Correlation R(λ1, λ2) of raw and 0.6th order FAD spectra.
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Note that the correlation peaks in Figure 1 are slightly shifted to smaller λ2 (downward) as 
compared with Figure 2 due to the peak-shift effect of FD. It follows therefore that the spectrum 

0.6: λ −R D S S is rather similar to : −R S S compared with 0.6: λ −R D S S.
Dependence of the 2D correlation spectrum R(λ1, λ2) on the magnitude of the absorbance can 

be removed by normalising it in the form of Equation (6), a result for 0.6: λρ −D S S being shown 
in Figure 3.

In this figure, however, very many correlation peaks are contributed from different constituents, 
making interpretation of the spectrum difficult. To extract correlation peaks that are correlated 
with a certain constituent, a normalized fourth-order correlation 0.6

4 : λρ −D S S was calculated with 
protein as the target constituent and is shown in Figure 4.

Figure 3. Normalised correlation ρ(λ1, λ2) of raw and 0.6th order FD spectra.
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In this figure, some quasi-autopeaks, e.g., at 1570, 1780, 2050, 2100 and 2200 nm are observed 
and cross peaks are seen at (1570, 1780) and (2050, 2200) nm. However, there are no cross peak at 
(2050, 2100) and (1570, 2200) nm. Care should be taken in interpreting ρ4 since the sign of varia-
tions in ∆p is not distinguished in Equation (8). For 2050 and 2200 nm are known to be assigned to 
protein, the quasi-autopeaks at 1570, 1780 and 2100 nm prove to be false correlation with protein. 
On the other hand, cross peaks at 1670 and 1720 nm correlated with 2200 nm show that they 
become correlated with protein for ν = 0.6, while not correlated in the raw spectrum.

2D correlation spectra given by Equation (7), such as 3 :ρ −S S, were also calculated and found 
to exhibit no significant peaks as predicted. Therefore, it is concluded that the fourth-order corre-

Figure 4. Normalised correlation ρ4(λ1, λ2) of raw and 0.6th order FD spectra and protein concentration.
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lation ρ4(λ1, λ2) is suitable for analysing structural change in NIR spectra as the derivative order 
changes in FD or FAD.
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