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Introduction
Many different approaches are available for the development of regression models (e.g. partial 
least squares regression (PLSR), principal components regression (PCR), stepwise linear regres-
sion), all of which require representative calibration sets containing spectra with corresponding 
measured variables (e.g. fat content, protein content). This poses a problem in hyperspectral 
imaging (HSI). It is practically impossible to measure the exact concentration of components in 
a sample at the pixel scale and therefore not possible to provide reference values for each pixel  
spectrum. To overcome this limitation, HSI regression models may be built using mean, or pixel  
spectra obtained from some representative region of a sample on which the reference value was 
obtained.1 The regression models developed can be applied to each pixel spectrum of the hyper-
spectral image, resulting in a prediction image in which the spatial distribution of the predicted 
component(s) is easily interpretable. HSI regression using PLS has been used for predictive 
mapping distribution of chemical components in a variety of sample types. However, PLSR 
models are known to be prone to over-fitting, especially in the absence of statistically-independent 
datasets for model validation. The term ‘over-fitting’ in this respect usually means inclusion of  
too many latent variables in the prediction model. Selection of latent variables is therefore a crit-
ical step in PLSR model building. Various metrics can be extracted from hyperspectral imaging 
data to estimate the correct number of latent variables in PLSR models. The D-metric1 estimates 
accuracy and precision from HSI prediction images by combining the pooled root mean squared 
error of prediction (RMSEPG) and standard deviation (SG) from different image regions (ROIs) as 
follows [Figure 1(a)]:

D-metric=[RMSEPG
2+ SG

2]1/2

The D-metric does not take into account spatial distribution of pixel values in the predic-
tion image. One relatively straightforward image analysis technique that does is Adjacent Pixel 
Intensity Difference Quantisation (APIDQ).3 This technique considers the intensity difference in 
horizontal (dIx) and vertical (dIy) irections of an input image using subtraction [Figure 1(b)]:
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dIx(i,j)=I(i+1,j)-I(i,j); dIy(i,j)=I(i,j+1)-I(i,j)

The azimuth and radial (dR) coordinates of dIx and dIy represent the direction and extent 
respectively of intensity variation in an image. 

The aim of this work was to investigate the performance of PLSR models for predicting 
attributes from HSI data and in doing so examine the usefulness of the D-metric and APIDQ for 
preventing over-fitting in HSI regression.

Materials and methods
The HSI system employed in this research consisted of a high performance CCD camera (580 × 
580 pixels) and a spectrograph (Specim V10E) attached to the camera covering the spectral range 
400 nm to 1000 nm. In order to simulate a simple system of uniform samples with varying spectral 
response, a paint reference colour sheet (code: RAI 17-21, Fleetwood Ltd) with five different green 
levels was imaged (Figure 2). 

The Hunter L-, a- and b-values of each green level were measured using a colorimeter 
(CR-400, Minolta Corp., Japan). A rectangular region of 1,800 spectra was defined for each green 
level [Figure 2(a)] and PLSR models were built to predict Hunter L-, a-, b-values. Standard normal 
variate (SNV) preprocessing was applied to the spectral data. 

Figure 1. (a) Calculation of D-metric from a set of residual prediction images. (b) Calculation of APIDQ from 
prediction image.
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Data analysis
A Monte-Carlo re-sampling strategy was employed for model building and the optimal number 
of latent variables was estimated using the method described by Martens and Dardenne.2 This 
method uses only spectral data as follows: 100 spectra were randomly-selected from each green 
level to make a training set and the remaining spectra (1800 minus 100 spectra) were used for 
model tuning. This was repeated 100 times; each time the optimal number of latent variables (Aopt) 
was estimated using the root mean squared error (RMSE) of cross-validation (training set) and 
prediction (tuning set) as follows:

Aopt= RMSE(A)+ A*y*s

where A = number of LVs; y  = penalty factor between (0.01,0.1); s = max [RMSE(A)]
Regression coefficients were estimated using the full set of calibration data (i.e. 1800 × 5 

spectra) and applied to the hyperspectral image to create prediction images. The D-metric and 
APIDQ were calculated from residual prediction images for PLSR models with different numbers 
of latent variables.

Results and discussion
The optimal numbers of latent variables (Aopt) for the prediction of L-value, estimated from the 
Monte-Carlo re-sampling strategy, are shown in Table 1. 

It is evident that the selection of penalty factors influences Aopt. In addition, the training and 
tuning sets suggest different Aopt (i.e. two or three latent variables). Prediction images for L-value 
applied to the calibration set are shown in Figure 3. 

Visual inspection of these images indicated that three latent variables were sufficient for 
prediction of L-value; addition of further latent variables did not seem to improve the predictive 

Figure 2. (a) Paint colour reference sheet with different green levels showing regions used in hyperspectral 
image regression model building and corresponding L-values measured in these regions. (b) Mean reflect-
ance spectra from each region shown in (a). (c) standard normal variate (SNV) pre-processed spectra from 
each green level. 
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performance of the model. The two-latent variable model is clearly inadequate, resulting in a 
poor prediction image. This simple example shows how visual interpretation of prediction images 
can be a useful step in model evaluation. The D-metric and APIDQ for prediction of L-, a- and 
b-value, calculated from the prediction images of the calibration set, are shown in Figure 4. 

In the case of L-value prediction [Figure 4(a)], the D-metric exhibited no clear minimum but 
did not change appreciably after three latent variables (LVs); The APIDQ increased to a local 
maximum at three LVs but did not seem to change appreciably after that. The D-metric and 
APIDQ plots for prediction of a- and b-value were remarkably similar in shape [Figures 4(b)-(c)], 
indicating correlation between these two variables. For both a- and b-prediction the D-metric, 
while not reaching a minimum, seemed to reach a stable value after five LVs; the APIDQ reached 

Figure 3. Predicted and Target images for prediction of L-value of paint colour reference sheet for different 
numbers of latent variables (#LVs). The prediction image for the optimal number of latent variables is  indi-
cated with a red rectangle.

Table 1. Optimal numbers of latent variables (Aopt) for the prediction of L-value, 
estimated by Monte-Carlo resampling using different penalty values. Each number 
is the mean of 100 random sampling runs.

Penalty Aopt training Aopt tuning

0.05 1.8 3

0.03–0.05 2 3

0.01–0.1 1.7 2.6
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Table 2. Optimal numbers of latent variables for the prediction of a- and b-value, 
estimated by Monte-Carlo resampling (“Aopt training” and “Aopt tuning” in which 
each number is the mean of 100 random sampling runs), observation of prediction 
images (‘Pred Image’).

a b

Aopt training 4 4

Aopt tuning 4.5 4.6

Pred. image 4 4

D & APIDQ 4 or 5 4 or 5

a maximum at four LVs after which changes were minimal. Based on this visual analysis of the 
D-metric and APIDQ curves, it seems that a three LV model is suitable for the L-value prediction 
while a four or five LV model is appropriate for a- and b-value prediction on the dataset exam-
ined. It is evident that observation of the prediction images D-metric and APIDQ agreed with the 
Monte-Carlo re-sampling strategy which suggested an Aopt of four or five.

Conclusions
This work highlights one of the major advantages of hyperspectral imaging not possible with 
traditional point spectroscopy; the ability to construct prediction images. Such images enable 
direct visualisation of model performance and can aid in the selection of an appropriate number 
of latent variables for any given regression model, thus preventing over-fitting. Numerous metrics 
may be calculated from prediction images to make the selection of latent variable dimension more 
objective. The examples given here, D-metric and APIDQ provide promising results compared 
to standard strategies such as Monte-Carlo re-sampling. Based on the findings of this study, a 

Figure 4. D-metric and APIDQ calculated from residual prediction images of calibration dataset for prediction 
of: (a) L-values; (b) a-values and (c) b-values.
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combination of strategies, including visual analysis of prediction images, would be advisable for 
optimisation of hyperspectral image regression models. In future work, the methods presented 
here will be applied to new datasets in order to further test their performance. 
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