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Introduction 
Several chemometric techniques allow us to unravel spectra and to calibrate the VIS-NIRS signal, 
i.e. to relate the spectra of samples to their laboratory reference values. The most common include 
Partial Least Squares Regression (PLSR), Multiple Linear Regression (MLR) and Principal 
Component Regression (PCR). There are also non parametric methods such as Artificial Neural 
Network (ANN) or Regression Trees (RT).1 RT partition samples into groups having similar 
values for the response variable based on a series of binary rules constructed from the predictor 
variables, and model complex interactions between predictors. Boosted methods improve the 
performance by creating an ensemble of hundreds of simple trees, each of which is adapted to 
each sample, and by combining them in a forward procedure.2,3 One of the main interests of the 
regression tree family of methods consists in the integration of additional data either quantitative 
or qualitative in the model. Though direct graphic representation of the complete tree model is 
impossible with boosted regression trees, the model interpretation is made easy by identifying 
the variables most relevant for prediction, and then visualising the partial effect of each predictor 
variable, after accounting for the average effect of the other variables.2 A few papers have used 
RT models to model soil properties using Vis-NIR spectroscopy.4,5 Our objective in this study 
was to evaluate the accuracy of calibrations for prediction of soil properties, comparing PLS and 
BRT models, based on Vis-NIR spectra and additional data on a large database encompassing a 
wide array of soils.

Materials and methods 
The soils came from the RMQS network soil library (French soil quality monitoring network) 
representing soils sampled with a 16 × 16 km systematic grid covering the whole French terri-
tory. A NIRSystem Model 6500 spectrophotomer (Foss Analytical) was used to record reflect-
ance spectra of 1986 soils at 2 nm intervals between 400 to 2500 nm. Classical physico-chemical 
properties including organic carbon (OC), nitrogen (N), cation exchange capacity (CEC), metal 
concentration, textural fraction, were analysed. 



148 R. Joffre, et al

PLS calibrations were built on the first derivative of spectra using the NIPALS algorithm 
included in the PLS Toolbox (Eigenvector Research Inc., Manson, WA, USA). Boosted regres-
sion trees (BRT) were built using the gbm R package.6 The main parameters for fitting BRT 
are learning rate (LR), tree complexity (TC), minimum number of observations (Min obs.) per 
terminal node and bag fraction. The learning rate determines the contribution of each tree to the 
model. Tree complexity defines the maximal numbers of nodes in the individual trees. A bag frac-
tion of 0.75 was used which means that, at each step of the boosting procedure, 75% of the data 
in the training set were drawn at random without replacement. A variety of models were next run 
combining three learning rates (0.05 0.005 and 0.0005), four levels of tree complexity (5, 10, 15, 
20) and three thresholds of minimum observations (5, 10, 15). 

A first experiment compared PLS and BRT regressions for five chemical variables – organic 
carbon (OC), total nitrogen (N), cation exchange capacity (CEC), total iron (Tot-Fe) and total 
magnesium Tot-Mg - built on 210 spectral predictors (each 10 nm between 400 and 2500 nm). 
A second experiment explored the BRT regressions for the same variables built on spectral plus 
chemical (pH, CEC) and textural (sand, clay) and geographic (latitude, longitude, elevation, land 
use type) predictors. CEC was not considered as a predictor when calibrating it. Calibrations were 
done on 1486 samples and validation on 500 independent samples. 

Results 
Figure 1 showed the variation of the RMSEP of OC with the number of trees for distinct values of 
learning rate, tree complexity and minimum observation respectively. 

Convergence between RMSEP was obtained with learning rate values of 0.05 and 0.005 whilst 
a lower rate of 0.0005 did not allow RMSEP to decrease rapidly [Figure 1(a)]. As a consequence a 
LR value of 0.005 was fixed for all subsequent models. The curves between RMSEP and number 
of trees were quite distinct when modifying the minimum number of observations with signifi-
cant lower RMSEP with a value of 3 [Figure 1(b)]. No clear pattern emerged due to interactions 
between tree complexity and number of trees in Figure 1(c). Accordingly, three levels of minimum 
observations (3, 6 and 9) and five values of TC ranging for 10 to 20 were systematically tested in 

Figure 1. Variation of the RMSEP of organic carbon with the number of tree for distinct values of learning 
rate LR (a), minimum number of observations in the terminal node Min Obs (b) and tree complexity TC (c).
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the subsequent models for all studied variables. We presented hereafter only the best calibration 
for each constituent.

Validation statistics of the PLS model and the BRT models for each constituent were presented 
in Table 1. 

When based only over spectral data, BRT models gave very close results to PLS models 
whatever the variable under study. Adding non-spectral descriptors as chemical, textural and 
geographic descriptors improved the calibrations for all constituents significantly. The improvment  

Table 1. Validation statistics for vis-NIR PLS and BRT models.

PLS model on 
vis-NIR data

BRT model on 
vis-NIR data

BRT model on 
vis-NIR data + 
chemical and 
geographic 
descriptors

RMSEP 
improvement 
Between 
complete BRT 
and PLS  
calibrations

RMSEP r2 RMSEP r2 RMSEP r2

OC g kg-1 4.82 0.80 5.01 0.78 3.63 0.88 24.7

N g kg-1 0.38 0.81 0.39 0.80 0.29 0.89 23.7

CEC cmol 
kg-1

2.66 0.87 2.78 0.85 1.81 0.94 32.0

Tot-Fe % 0.51 0.77 0.52 0.75 0.44 0.82 13.7

Tot-Mg % 0.14 0.67 0.14 0.65 0.13 0.73 7.1

Clay g kg-1 43.7 0.83 44.5 0.82 34.3 0.90 21.5

Silt g kg-1 94.7 0.70 95.8 0.68 86.5 0.74 8.7

Figure 2. Relative variable importance for the ten most important predictors of boosted regression models 
based on vis-NIR predictors (upper graph, black bars) and vis-NIR plus physic-chemical and geographic de-
scriptors (lower graph, grey bars). Figures correspond to organic carbon (OC), nitrogen (N), cation exchange 
capacity (CEC), toal iron (Tot-Fe) and total magnesium (Tot-Mg).
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of root mean square error of prediction (RMSEP) ranged from 7.1% (Tot-Mg) to 32.0% for the 
chemical parameters and from 8.7% (Silt) to 21.5% (Clay) for the textural fractions. 

Figure 2 showed the relative variable importance of the ten first predictors for each of the 
chemical variable in the two BRT models. 

Not surprisingly, the wavelengths selected by the model based on spectral absorbance were 
also selected and generally equally ranked by the more complex model, including other non-
spectral predictors. Clay content was included in all complex BRT models with a very high rank 
in Tot-Fe, CEC and N models. CEC improved models for OC, N and Tot-Mg significantly. pH was 
selected only to predict CEC values. Elevation improved OC, N and Tot-Mg and the categorical 
descriptor of land-use was included in the OC and N models. 

Conclusion 
The BRT calculation procedures allow mixing of qualitative and quantitative predictors to build 
predictive models. The near infrared spectra of soil are dependent on the mineral matrix and in 
this case, calibration of organic constituents could be difficult due to the “noise” of the physical 
parameters. This study suggests that the BRT approach gave the same results as PLS models when 
based only on spectral descriptors, but could improve the precision of the obtained calibrations 
significantly when other predictors relative to land use, parent material or other geographic infor-
mation could be included in the dataset. 
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