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Introduction
Road vehicle gas oil is a worldwide product with properties that are important to gas oil

producers, automobile manufacturers and consumers. The target properties of interest start with
a good cetane number (measuring the self-ignition of the gas oil), good low temperature properties
(influencing the way of introduction of the gas oil) and a low sulfur content (affecting catalyst
durability and environmental pollution). They also include other properties such as the density
(affecting the power of the engine and the emission rate), the distillation parameters (affecting the
volatility of the gas oil and thus the overall engine performance), the viscosity (affecting the
combustion procedure), the nitrogen content (affecting the stability of the gas oil) and the aromatic
content (affecting the ignition characteristics). The legislation on gas oil is evolving in Europe and
in the US. The constraints on the composition become more and more important to reduce
emissions or to modify them.

Gas oils with different characteristics can be obtained by different refining configurations and
the refiners have to find the best way to meet the specified targets and to continue to make an
operating profit. It is a complex problem because of the wide variety of gas oil blending stocks,
ranging from paraffinic straight run gas oil to coker gas oils and FCC (fluid catalytic cracking)
cycle oils.

In the laboratory, there are several normalised methods available for characterising gas oils.1

However, many of these methods are time-consuming and need tedious procedures that require
large volumes of sample and well-trained, experienced analysts. Moreover, each method requires
a specific instrument which adds to cost. The measurement of these gas oil properties can also be
required for the optimisation and the advanced control of processes. This is not possible without
a fast and complete characterisation of the overall properties of interest. Thus, clearly, an
alternative method for determining gas oils properties is desirable. It has to be more rapid, less
expensive and more suitable and if possible, able to operate on-line.

Near infrared (NIR) spectroscopy fulfills all these conditions and, over the last several years,
its potential has been explored and largely demonstrated in the fields of the determination of
chemical and physical properties of hydrocarbons.2–6 Its suitability for the determination of such
properties comes from different points. First, near infrared spectrometers are reliable in terms of
high signal to noise ratio and reproducibility. Second, it is possible to use long optical fibres for
on-line plant analysis without significant loss of sensitivity and to multiplex the fibres in order to
analyse at different points of the plant with a single spectrometer. Third, the NIR region contains
mainly bands that result from overtones and combinations of –CH vibrations such as methyl,



methylene, olefinic and aromatic –CHs. Finally, with chemometrics, it is possible to determine
the composition of a sample or a physical property related to the molecular structure.

Unfortunately, there are also some drawbacks which, up to now, have limited the use of this
technique in petroleum refineries. It is necessary to develop a good and strong background
experience both in the analytical area and in the modeling step.

The scope of this paper is to describe the different steps of the modeling of the refractive index
with the partial least square (PLS) algorithm. The refractive index was chosen as an academic
example to test the potential of the PLS method to predict a physical parameter determined with
high accuracy by a normalised method. Refiners normally use the refractive index to determine
the composition of aromatic, paraffinic and naphtenic compounds in gas oils with the so-called
ndM (refractive index n, density d, average molecular mass M) method referenced ASTM
(American Society for Testing and Materials) D-3238.

Experimental section

Gas oil samples

One hundred gas oil samples were provided by the centre of industrial developments (CEDI)
of IFP situated in Lyon (France). They were all issued from an hydrotreatment process either from
the same feedstock hydrotreated under different conditions with different types of catalysts or
from feedstocks with different origins but hydrotreated under the same conditions. The refractive
indices of the samples were determined by refractometry at 20°C using the ASTM D-1218 method.
The refractive index range was between 1.4470 and 1.5210. The repeatability and the reproduci-
bility of the normalised method are 6 × 10–5.

Spectroscopy

The NIR spectra (10,000–4000 cm–1) were recorded on a Bomem MB160 spectrometer
equipped with a InAs Peltier cooled detector and a halogen source. The spectrum of each sample
was recorded twice in a random order and the two spectra were averaged. The resolution was 4
cm–1 and the number of accumulations 100. The optical pathlength of the quartz cell (quality QX)
was 2 ± 0.02 mm. The spectrometer was purged with dry nitrogen for 10 minutes with a nitrogen
flow of 5 L h–1. The sample temperature was 30 ± 0.1°C and the room temperature 24 ± 2°C.

Statistical method

PLS regression was performed with a 486/60 MHz PC computer and the analysis routine called
PLSplus supplied by Galactic Software. The averaged absorbance-type spectra of each sample
were mean-centered by the average spectrum of the database and variance scaled before each
modelisation step. We have evaluated the predictive power of the models by obtaining the standard
error of prediction (SEP) of the data by cross-validation with one “left-out” sample.7–8

Methodology used to optimise the “refractive index” model using
the PLS algorithm

Relationship between the variations of the refractive index and those of the near infrared spec-
tra

The refractive index is a physical property measured in the visible region at 0.583 µm by
refractometry. It varies in the region of the absorption bands. It depends on the chemical
composition of the sample and namely on the concentrations in aromatic, olefinic and naphthenic
compounds and on the average molecular mass.
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It also depends on the temperature. For the database samples and for the temperature range
20–30°C, it follows the relation: ∆n/∆T = 0.0004. This relation is linear but the variation of the
refractive index is not negligible. The near infrared measurements thus have to be realised at a
controlled temperature. Before any recordings, the samples were brought to room temperature
and left for 10 minutes under the infrared beam. The measured temperature of the sample was, in
those conditions, 30 ± 0.1°C. Any temperature variation in this range would involve a negligible
refractive index variation compared with the repeatibility of the standard method.

A variation of the refractive index may involve different optical phenomena which are added
to the chemical fingerprints of the different chemicals. As the spectra were recorded with reference
to the empty cell, the difference in the refractive index between the air and the solution implies a
change in the reflexion coefficient at the interface between the liquid and the quartz wall of the
cell and a defocalisation of the infrared beam which can affect the overall baseline of the spectrum.
As illustrated in Figure 1, representing three near infrared spectra of gas oils with different indices,
these baseline variations are important and obviously non-linear. A change in absorption coeffi-
cients can also occur, due to changes in the local fields and in the optical pathlength. These two
latter effects are certainly negligible.

So, this analysis of the property of interest, i.e. the refractive index, shows that it correlates
with the sample composition whose fingerprint is present in the spectrum. We can already expect
to have to model non-linear effects due to the baseline translation and certainly due to the extent
of the database values. It will therefore be interesting to evaluate the performances of different
models by previously pretreating the data. The quality of the models will be evaluated according
to the values of target parameters referenced to the standard method, i.e. the target SEP and the
target R2.

Figure 1. Near infrared spectra of hydrotreated gas oils with different refractive indices.
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The target SEP can be evaluated by the formula:

target SEP2 = SEPstandard method
2 + SEPNIR

2

with SEPstandard method, the SEP of the standard method equal to 2.1 × 10–5 and SEPNIR, the SEP of
the near infrared measurements evaluated via the calibration model equal to 5.6 × 10–5. So, the
target SEP is equal to 6 × 10–5.

The target R2 can be calculated by the formula: 

R2
target = 1 – (SEPstandard method

2/ variance of the database)

This parameter is equal to [1 – (4 × 10–10/1.6129 × 10–4)] = 0.999996 in our case. This is very
close to 1 and could, by now, predict that we will need a large number of eigenvectors to model
the refractive index.

Optimisation of the model parameters by performing the PLS algorithm

Selection of the wavelength region

Although it is normal practice to perform the PLS regression on the overall wavelength region,
we tried to evaluate the potential information content of the different wavelength regions. The
10,000–4000 cm–1 region can be divided into three regions respectively attributed to the first
harmonic (2ν) and combination (ν + 2δ) of the –CH’s stretching and deformation vibration
between 6400 and 4500 cm–1, to the (2ν + δ) bands in the 7800 and 6400 cm–1 region and finally
to the (3ν) and [2(ν + δ)] bands in the 9000 and 7800 cm–1 region. The main results obtained by
truncature and combination of the different regions are illustrated in Table 1. In terms of best SEP,
we can see that the best results were obtained in the 6400–4500 cm–1 wavelength region. This is
not due to the fact that the absorbance is of the order of 1 in this region instead of 0.1 in the others.
All the spectra were recorded with an optical pathlength of 1 cm on a Bran+Luebbe InfraProver
spectrometer and similar results were obtained. So, the best wavelength region to model the

100 samples
l = 2 mm
averaged, mean-centered
and variance scaled
spectra.

Wavelength 
region in cm–l

Number of eigenvectors
(P: the probability

associated with the F-test
applied to compare the

SEPs)

SEP R2

Regions 1 + 2 + 3 10,000–4500 13 (P = 0.980)
14 (P = 0.768)

0.00022
0.00019 0.9997

Region 1 6400–4500 12 (P = 0.996)
14 (P = 0.699)

0.00019
0.00015 0.9998

Region 2 7800–6400 l l (P = 0.809)
12 (P = 0.72)

0.00044
0.00042  0.9987

Region 3 9000–7800 8 (P = 0.9290)
9 (P = 0.731)

0.00054
 0.00049 0.9983

Table 1. Optimisation of the wavelength region for modeling the refractive index.
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refractive index property seems to be the 6400–4500 cm–1. Nevertheless, the number of eigenval-
ues necessary to model it with precision is equal to 14 and this seems very high. In the following
section, we try to understand this point.

Effect of the data pretreatment

By previously analysing the property, we underlined the effect of the non-linear variation of
the spectra baseline. These variations should disappear by derivation. Taking the first one decreases
the number of eigenvalues necessary to model the refractive index to 9. Nevertheless, the SEP
increases from 0.00015 for the model obtained without taking the first derivative to 0.00043.
Results obtained by applying a second derivative to the spectra gave even worst results in terms
of SEP quality [SEP = 0.0008, n = 6(P = 0.599)]. So, either the baseline translation is at the origin
of the important number of eigenvalues and contains an important part of the information
necessary to model the property of interest or the derivative introduces too much noise forbidding
a precise model. This uncertainty should be solved by looking at the effect of the smoothing of
the spectra because it could decrease the noise introduced by the derivative. Decreasing the
resolution from 4 to 80 cm–1 or applying a multiplicative scatter correction (MSC) had no effect
on the quality of the results.

Effect of the size of the data base

The values of indices in the database are widely spread out. The refractive index measured at
20°C varies from 1.4470 to 1.5210. Almost 85% of the refractive indices values are between 1.455
and 1.475. One idea was thus to reduce the extent of the refractive index by keeping enough
spectra. Table 2 summarises the main-results and shows that the number of eigenvalues can be
reduced to 10–11 keeping a SEP of ~0.00018. This illustrates the effect of the size of the database
for which the variation of the refractive index is certainly not linear over the whole refractive index
domain. Nevertheless, at this point we are limited by the number of possible samples and from a
lab or industrial application viewpoint it is easier to use the most “universal” model. This is the
reason why, keeping the model with the 14 eigenvalues, we chose to validate it by different
methods and to evaluate its robustness.

Region 1
6400–4500 cm–1

pathlength = 2 mm

Number of eigenvectors
(P: the probability associated

with the F-test applied to
compare the SEPs) 

SEP r2

42 samples
1.449 < n < 1.4896

10 (P = 0.9794)
 l l (P = 0.5)

0.00020
 0.00014  0.99969

34 samples
1.4660 < n < 1.469

8 (P = 0.99997)
 12 (P = 0.7487)

0.00019
0.00009 0.9543

29 samples
1.4630 < n < 1.467

9 (P = 0.9932)
10 (P = 0.71)

0.00025
0.00018 0.9898

Table 2. Effect of the size of the database on the modeling of the refractive index.
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Validity and robustness tests of the developed model

Validity tests

The validity of the model developed by PLS regression on 100 averaged/mean-centered/vari-
ance scaled/non-derivated near infrared spectra, with 14 eigenvectors, SEP = 0.00015 and r2 =
0.9998 was checked either (i) by dividing the database in two (the statistical results obtained by
cross-validation on 50 spectra were the same as the one obtained on the 100 spectra. The 50
“left-out” samples were predicted with a SEP equal to 0.00015) or (ii) by predicting non-hydro-
treated gas oils produced by different refinery processes.

Outlier detection F-tests8 allowed determination of the characteristics of the samples which
can be precisely predicted by the model. The samples characteristics have to fulfill these
conditions:

1.4470 < n20°C  < 1.5210; 7 < % aromatics < 30; 220  < average molecular mass < 280;
% olefins < 0.3; % naphthens < 5 and 33 < % paraffins < 51.

Robustness tests

The robustness of the model has been evaluated by (i) increasing and decreasing by a factor
of two the S/N ratio of the spectrum to be predicted by changing the number of scans from 100
to 25 and 400, (ii) modifying the quantity of residual water in the sampling compartment of the
spectrometer and (iii) recording the spectrum of the unknown sample in another cell than the one
used for the calibration. The optical pathlength of the cell was equal to the calibration one ± 0.02
mm. Changing these parameters, did not modify the quality of the prediction of the unknown
sample.

Transferability of the model
The transfer of calibration of the “refractive index” model (n = 14, SEP = 0.00015) has been

successfully realised on three different Bomem MB160 spectrometers without any previous
corrections of the spectra or of the calibration model. 
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