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Introduction
The near infrared (NIR) measurement of samples has three aspects: spectroscopy, calibration

and data analysis. The first near infrared experiments created a lot of interest in improving data
analysis and the possibilities of efficient data analysis created new demands for spectrometers.
This interaction is very powerful. In all cases, a well-designed set of calibration samples is
necessary. Regression and calibration are closely connected. There have been enormous develop-
ments in the field of regression. Selection of samples and variables and the use of non-linear
models are among those new developments. New data structures and larger databases pose a new
challenge and demand a more holistic approach to data analysis. This paper presents some recent
trends and developments in chemometrics. The literature overview given is only a small and very
subjective selection. Figure 1 gives an overview of the topics that may be considered. Because of
space limitations only the major topics are treated here.

Figure 1. Important topics in data analysis. Some of these are presented in more detail in
this article.
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Chemometrics
Chemometrics is the use of mathematical, statistical and computer science methods for

improving the extraction of useful information from chemical measurement data. See also Figure
2. The aspect “computer science” is gaining more and more importance. Chemometrics would
not be possible without data file management. Also, many techniques have no known distributions
from statistics or analytical solutions from mathematics to rely on and the use of iterative or
resampling procedures prevails. The term chemo in chemometrics is very important. No matter

Figure 2. Chemometrics is the combination of mathematics, statistics and computer science
to extract more information from chemical data, with the emphasis on a final chemical
interpretation.

Figure 3. The rose of opposites in chemometrics. The most recent developments focus on
the middle of the rose.
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what an algorithm comes up with, the final interpretation of the results is the chemical one.
Computer science also provides the advanced visual presentation techniques that are important
for communicating results. Some of the aspects of the history of chemometrics may be found in
References 1–3. In Reference 4, the rose of opposites in chemometrics was presented. It is shown
as Figure 3. In the early days of chemometrics, many developments were a reaction against
established statistical techniques. Chemometrics proposed soft modeling against prevailing hard
models, putting emphasis on the model instead of the exact knowledge of the distribution of the
noise and using a posteriori information instead of expecting everything to be known a priori.
Chemometrics also tried to organize the space between random sampling and strict design. Recent
work emphasizes a convergence in the middle of the rose. This may be done by including hard
information in soft models, relying on partly known a priori information and giving equal
importance to the models and the unmodeled noise. Also a better grip on using the principles of
design to improve random sampling is practised.

The final goal of any chemometrical analysis should be a holistic flow chart going from
problem definition over a number of steps to conclusions and a redefinition of the objectives. This
is presented in Figure 4. The flowchart in Figure 4 is only one of many possible flowcharts. All
the techniques of chemometrics fit in somewhere and it is no longer possible to treat one method
in itself without considering the whole. A milestone in chemometrics for NIR spectrometry was
the meeting “Food Research and Data Analysis” in Oslo, Norway, September 20–23, 1982.
Reference 5 details the proceedings of this meeting. In a chapter (pp. 473–492) of these

Figure 4. A possible flowchart for a chemometrical analysis. Every rectangle in the flowchart
is also connected in two directions to the literature and databases but this is not shown
here.
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proceedings, Harald Martens, Svante Wold and Magni Martens presented “A layman’s guide to
multivariate data analysis”. Much of what is presented in this guide is still valid and in common
use, e.g. latent variable regression methods such as partial least squares (PLS) and principal
component regression (PCR) but new and unforeseen directions have developed since.

Constructing data matrices by variable or sample selection
In the pioneering days of chemometrics, one had to work hard to collect objects (samples) and

to increase the number of variables. Nothing that was acquired could be left out of the data analysis.
Since then things have changed. Huge databases of calibration samples allow making subsets
having enough samples to make a model and quick scanning allows the collection of hundreds of
wavelengths in a few seconds, even with repeated scanning to reduce measurement noise. Figure
5 shows the principle of removing samples and wavelengths to obtain a better problem-oriented
calibration model. Because of this, the notion that subsets of samples may be more useful for
calibration emerged. A good recent example is the article by Naes and Isaksson.6 The method is
called locally weighted regression (LWR) and in Reference 6 references to some older articles are

Figure 5. Above: it is possible to make subsets of a large database of samples to get a
better calibration model serving a certain purpose. Below: It is possible to improve
calibration models by removing certain wavelength regions. Wavelengths are usually
correlated with their neighbors allowing the removal of contiguous blocks. Samples are
usually organized in a non-correlated order and may be selected more randomly.
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given. The principle is that neighbours in multivariate space of the sample to be predicted are used
to build the calibration model. The advantage of doing this properly is less prediction error with
less components in the PCR or PLS model. A number of geometries of multivariate space have
been tested, e.g. Euclidian and Mahalanobis. Also different distance-based weighting functions
for the samples have been tested. The idea of locally weighted regression is a very good one.
However, it requires quite a large number of calibration samples that are spread out reasonably
evenly in the space of possible test samples. It is important to visualize the space of calibration
samples and the spread and position of the ones selected in each calibration model.

For the removing of variables or wavelengths, the articles by Jouan-Rimbaud et al.7 and by
Lindgren et al.8 may serve as examples. Both articles also give references to some older techniques
of variable selection. An important one is the GOLPE method. A few critical remarks may be
made about variable reduction. Methods like IVS-PLS and GOLPE rely heavily in cross-validation
and this is not always problem-free. See the next section for more criticism of cross-validation.
Another problem is that different authors use different ways of expressing prediction error. What
is right: absolute errror, relative error, mean-squared error? One may also be tempted to ask what
the signifcance of an improvement means? Lower prediction errors are an improvement but when
does this impovement become significant and how does this relate to the number of calibration
and test objects and the range of concentrations used? Also, data pretreatments such as weighting
and derivation seem to have an effect. One would like to see the possibility of a complete ANOVA
decomposition of the error terms as it is done in experimental design.9

Modifying regression models, validation
The latent variable methods PCR and PLS have been used extensively for calibration but they

have also been subject to criticism and modification. An example is the article by Sun.10 In this
article it is shown for two data sets that PCR with selection of components is better than PLS or
PCR with all components included. The selection is based on a correlation criterion between
principal components and the concentration vector. The results are shown as the plot of RMSEP
against number of components. Plots of this type are often used for showing that one method is
better than another one by using less components or given a smaller prediction error. There is some
danger in using these plots, especially with cross-validation results. Cross-validation does not give
the absolute truth in rank (= number of components to be used). It gives a range of values for the
rank where one should start looking. Again, the chemo of chemometrics comes in. One should
always make sure that the chosen rank makes sense chemically, no matter what an algorithm
proposes. There are many ways of doing cross-validation. One may do it one component at a time
or for a whole block of contiguous or selected components. One may do leave-one-out or one may
leave blocks of a certain size out. This is where the experts don’t agree and there may be quite a
difference in the number of components suggested. A last observation about cross-validation is
that it is not distributive:

Xval[A → B → C → D] ≠ Xval[A] → Xval[B] → Xval[C] → Xval[D]

This means that cross-validating each step in a sequence of operations from A (the raw data) to
D (the final results) is not the same as cross-validating the whole process. A method combining
the properties of PCR and PLS was proposed by Stone and Brooks.11 Regarding constructing linear
regression vectors and comparing them, the reader is invited to look at References 12 and 13.
Another improvement is the use of kernel methods for PLS. Kernel methods exist for situations
with many more variables than objects or many more objects than variables. They are not a radical

An Overview of Multivariate Spectral Data Analysis 169

From Near Infrared Spectroscopy: The Future Waves 
© IM Publications Open LLP 1996



change since the PLS models remain the same, but they allow faster calculations and a more
efficient use of computer memory. They also speed up cross-validation calculations.14–18

Non-linear models
The classical calibration models are linear ones in which the response variable (concentration)

is a weigthed sum (linear combination) of the predictor variables (absorbances). This is given as
follows (mean-centering of the data allows leaving out the constant term):

y = Xb + f (1)

y: the concentration for N calibration samples (mean-centered); X: the spectra (K wavelengths)
for N calibration samples (mean-centered); b: the vector of K regression coefficients; f: the vector
of N residuals. The equation is amended in the case of latent variable regression:

y = Td + f (2)

T: the matrix of A latent variables for N calibration samples; d: a regression vector with A elements.
Already in 1982 in Oslo (Reference 5, pp. 16–18) it was mentioned that non-linear methods would
be needed for treating non-linear structures in multivariate space. Often it is found that more latent
variables take care of the non-linearities in a satisfactory way. Two important ways of treating
non-linearities are: non-linear transformation of the variables and non-linear transformation of
the latent variables. Some possibilites are given:

G(y) = Xb + f (3)

The concentrations are transformed to make the equation fit better. Exponents and logarithms may
be used. This is comparable to the Box–Cox transformation in experimental design and response
modeling.9

y = H(X)b + f (4)

In biological and geological situations, the logarithmic transformation is often used because of
skewed distributions. The transformation may also be something like multiplicative scatter
correction.

G(y) = H(X)b + f (5)

This is just a combination of what was done in Equation 3 and Equation 4. Often non-linear models
may be built by adding non-linear transformations of the predictor variables:

y = [X X2…]c + f (6)

c is a vector of regression coefficients. It is longer than b, because the number of variables has
increased. Other transformations of X (such as variable cross products, cubes, square roots etc.)
may be added too. In general one may use:
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G(y) = [H(X) H(X)2…]c + f (7)

The problem of adding many variables to a data matrix X with already many variables is that the
number of variables may become difficult to handle. This makes the methods for variable selection
in the previous section very useful. For latent variable methods, transformations of the latent
variables and polynomials in the latent variables have been proposed to improve the handling of
nonlinear data.

y = H(T)d + f (8)

y = [H(T) H(T)2…]c + f (9)

Many non-linear methods suffer from the problems of too many parameters. It is difficult
enough to select the right number of latent variables. When it also becomes necessary to select
coefficients for polynomials, the amount of choices becomes confusing and models can be made
to fit any situation, often without the least physical meaning. Therefore, it is considered much
better to use linearization methods based on physical “hard” knowledge as in Equation 5 or
Equation 7. Overviews of non-linear calibration modeling are given in References 19 and 20.
Recently, some good results have been obtained with neural network calibration.21,22

Recalibration, calibration transfer
Recalibration and calibration transfer are very important topics. Industries and research

laboratories spend a large effort in calibrating their instrument to get the best possible predictions.
Very large calibration sets are sometimes built up for NIR spectrometry and there is no point to
remeasuring them every day. The problem is that instruments change with time and sometimes
break down completely and have to be repaired, often with spare parts that are not identical to the
old ones. Getting a good calibration restored as quickly as possible is recalibration. In some
industries, there are many simple spectrometers that have to be recalibrated against one more
complex laboratory instrument. This is called calibration transfer. A good tutorial about the general
principles of calibration transfer was written by de Noord.23 Going to another instrument may
mean a number of different situations. Baseline and sensitivity may change. Wavelength scale and
wavelength resolution may change. Signal to noise ratio may change. Many of the changes may
be wavelength dependent. de Noord discusses different situations from instrument matching, a
hardware solution to subset recalibration a true software solution. Other recent papers on this topic
are References 24 and 25. Some good work has been done and some good results were obtained.

Conclusions
All the new developments described in the preceding sections are exciting and promising in

themselves and may be even more useful when combined, e.g. combining locally weighted
regression with variable selection and non-linear modeling. The problem is that the situation may
become very confusing even for experts, without thinking of what it would do to newcomers. A
sad development seen in many publications is that the raw data are not made available to the reader,
so that there is no way of confirming what the authors are claiming. To make things even worse,
authors leave out details of their data analysis such as pretreatments so that even if the raw data
were available, nobody would be able to repeat the calculations. A questions to be asked is: how
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many authors are able to repeat their calculations and to get exactly the same results three years
after the appearance in print of their article? Instrumentation will develop and improve, making
the measurements more noise free and signals more specific and reducing the need for chemomet-
rics. One may compare this with the situation where a researcher spends two years in developing
software for deconvolving two overlapping peaks in a chromatogram when a new column is
introduced that separates the peaks physically. On the other hand, refinement of the instrumenta-
tion always leads to the discovery of new noise and error sources, providing new challenges for
chemometrics. One bottleneck in the whole process may be sampling and homogeneity of the
samples. There is no point in improving instrumentation when the true source of errors in
measurement is sampling, sample inhomogeneity or sample instability. Also this is a challenge,
both for the chemo- and the -metrics part of chemometrics.
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