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Introduction
The search for a unifying theory of analysis began in 1972. We asked a simple question. Could the

chemical and physical properties of a substance be measured from the light reflected from that sub-
stance? Today, it is embodied in an approach we call LOCAL. The theory is simple. It is that the visi-
ble/near infrared (vis/NIR) spectrum of a substance contains the information to define the basic
chemical and physical properties of a material. LOCAL is a procedure that uses the spectrum of the un-
known material, compares the spectrum to a library of information and predicts the chemical and phys-
ical composition of the unknown material. This paper will present the LOCAL theory and concept in
detail. The application of this method resulted in an improvement of NIR predictions compared with
traditional global calibration when applied to single product calibration. LOCAL was also tested with
large databases that included a wide variety of agricultural materials. We obtained standard error of
prediction (SEP) values similar, or lower than global calibration developed for each product. LOCAL
not only improves accuracy, but it greatly simplifies NIR routine analysis.

The accuracy of NIR predictions depends on the structure and distribution of spectra in the calibra-
tion file.1 In particular, the calibration database should include enough samples to cover most of the
possible spectral variability encountered during routine analysis. Large calibration data sets are re-
quired to predict samples coming from very diverse geographical and climatic areas increasing the
complexity of the spectral–reference model.

In theory, the best prediction method should compute a specific calibration equation for each sam-
ple analysed, using a small calibration data set tailored to the unknown sample from a large library of
samples. This method, often called local calibration, would combine the advantage of global calibra-
tion in using one database to cover a large product domain, to the accuracy obtainable with specific cal-
ibrations.

The objective of this paper is to present a new procedure called LOCAL that performs rapid predic-
tions applying the local calibration principle using large databases.

Materials and methods

LOCAL procedure
The LOCAL procedure (US patent no. 5,798,526) is designed to search and select samples in large

databases that have spectra similar to the sample being analysed. The selected samples are then used to
compute a specific calibration equation for predicting the constituents of an unknown sample.

The selection of calibration samples is controlled by the value of the correlation coefficient be-
tween the spectrum of the unknown sample and those of the database. The procedure computes all the
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correlations between the spectrum of the unknown sample and each spectrum in the product database.
The maximum number of samples used for calibration can be set manually by the operator or by a cor-
relation cut-off value. If some of the selected samples have constituents with missing values, LOCAL
will continue searching until it finds, for each reference value, the number of requested samples. This
ensures that all the constituents will be predicted using the same number of samples, even if the library
database has samples with incomplete reference values. If the sample being analysed is included in the
calibration dataset, LOCAL will automatically discard it from the selected samples.

After defining the calibration dataset, the procedure uses partial least square (PLS) regression to
compute the calibration equation. There are two methods of computation. The first method computes
the prediction using a model with a number of PLS factors set by the operator (from 1 to 50). The sec-
ond method calculates the predicted values using a weighed average of the predicted values generated
with various numbers of factors. Weights are computed for each prediction based on how well the
model fits the spectra of the unknown sample (X–residuals) and the root mean square (RMS) of the re-
gression coefficients for each factor.
The formula to calculate weights is as follows:

Weight1..k = 1/(rms-residual1..k × rms-beta..k)
where:
k = number of PLS terms set in the algorithm;
rms-residual1..k = root mean square of spectral data residual;
rms-betal..k = root mean square of regression coefficients of spectral data.
An additional option to this second method is to exclude from the computation of the final predic-

tion, the values obtained with the first PLS factors that usually generate poor predictions. Global and
neighborhood H values for the unknown sample are calculated with the PLS scores using the same
weights computed for the different models used in the weighed average described previously. To in-
crease the speed of prediction, spectra of the calibration file were reduced to 57.

Databases
The study used 16 feedstuffs, blocked in four databases called Forage, Grain, Meat and Feed, for a

total number of samples of 6599. All the silage and TMR samples were dried either in a microwave or
in a forced-air oven at 60°C. All the samples were ground through a 1 mm screen and analysed for dry
matter (DM) and crude protein (CP).2 Forage and grain samples were also tested for ADF,3 while sam-
ples included in the Meat and Feed database were analysed for fat content.2

Samples were scanned between 1100 and 2500 nm every 2 nm, using a Foss NIRSystem 5000
monochromator instrument (Silver Spring, MD, USA). The data set of each feedstuff was split into a
calibration and a validation file. Using the Centre algorithm,1 samples were ranked according to their
Mahalanobis distance (H) to the average sample. Samples with an H value greater than three were con-
sidered outliers and discarded. The validation files were generated selecting every tenth sample of the
centred file, with the remaining samples entering the calibration data set.

Math treatments, calibrations and validations
The weighed average method was used to calculate LOCAL predictions, excluding from the com-

putations the values generated with the first few PLS factors.
In order to perform LOCAL predictions, it is necessary to define three parameters (LOCAL(k, l, m)):

the number of samples selected from the calibration database (k), the maximum number of PLS factors
(l), and the number of predicted values of the first PLS factors to be excluded from the computation of
the final prediction (m).

A preliminary test was performed to determine the best LOCAL settings for each database. The
test consisted of the prediction of each sample in the databases by LOCAL, changing the number of
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samples selected (from 50 to 350 with steps of 50), the number of PLS factors (from 15 to 40 with steps
of five) and the number of PLS factors excluded (from four to ten with steps of two) in the computation
of the weighed average, for a total of 168 combinations. The best setting for each database was then
used in the prediction of the validation file. Default math pre-treatments were 1,4,4 (derivative, gap
and smoothing in nm) with SNV and detrend scatter correction.4 Then all the spectra used in LOCAL
were reduced to 57 datapoints by combining the spectra every 24 nm in the interval between
1124–2468 nm.

Global calibrations were performed (WinISI, Infrasoft International LLC, Port Matilda, PA, USA)
for each feedstuff and for each multi-product database, using the same math pre-treatments used in
LOCAL, the only difference being that spectra were reduced to 169 data points. Validation files of
each feedstuff were then predicted using their specific equation and with the equation of the database
the feedstuff was classified. SEP, using global equations and LOCAL procedure, were compared.

Results and discussion

On average, using LOCAL procedure improved NIR predictions for Forage, Feed and Meat data-
bases. LOCAL had SEP values slightly greater than the traditional global calibrations for grain only.
Further details on this evaluation of LOCAL performances can be found in the literature.5,6 As could be
expected, SEP values generated using one single database were similar to those obtained using the four
databases and with the product-specific global calibrations (Table 1). The capability of LOCAL to se-
lect samples with valuable information is not affected by the number and variety of products included
in the database. Actually, because very diverse products were included in the database, LOCAL could
probably easily select calibration samples with spectra more similar to the sample being predicted.
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LOCAL within database LOCAL one database Global equation

Generica Specificb

cFORAGE(200, 35, 4)

Protein
ADF
Dry Matter

0.680
1.470
0.775

0.680
1.493
0.769

0.758
1.672
0.896

0.720
1.539
0.790

GRAIN(150, 20, 6)

Protein
ADF
Dry Matter

0.343
0.729
0.493

0.374
0.756
0.484

0.424
0.886
0.591

0.337
0.700
0.443

FEED(100, 25, 6)

Protein
Fat
Dry Matter

0.805
0.387
0.470

0.808
0.406
0.503

1.215
0.443
0.598

0.866

0.516

MEAT(100, 25, 6)

Protein
Fat
Dry Matter

1.080
0.612
0.266

1.081
0.601
0.266

1.387
0.621
0.329

1.301
0.583
0.286

aGLOBAL Generic: Global calibration using the entire Forage database
bGLOBAL Specific: Global calibration using each single product database
cLOCAL settings: Number of selected samples, number of PLS factors, number of PLS factors discarded

Table 1. Standard error of prediction using LOCAL or Global calibrations
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Even if LOCAL had to select samples through a large database, computation of predictions was very
rapid. On a Pentium II300 MHz personal computer, the speed of LOCAL (150, 20, 6) prediction for the
three parameters (Protein, ADF and DM) of grain samples was 0.6 s per sample.

Conclusions
LOCAL clearly showed the capability of predicting the constituent composition of a large variety

of feeds as well as, or better than, traditional global calibration methods. Compared with some of the
previously7–9 proposed local calibration techniques, LOCAL has a greater speed of prediction that al-
lows this procedure to be implemented in routine analysis. One of the most important features of LO-
CAL is the rapid and efficient selection of samples used in the calibrations. This result shows the great
selecting capacity of LOCAL and it opens new perspectives on NIR analysis. Laboratories that use
NIR on a daily basis can reduce the number of calibration data sets to be maintained into a few, or even
one single, database. Because LOCAL automatically selects the samples and creates a calibration
equation, it is not necessary to identify the type of sample being analysed simplifying the analytical
process. All these LOCAL features can radically change the operational system of NIR networks. In
fact, it would be possible to have remote NIR instruments which simply collect NIR spectra and send
them to a central NIR laboratory which stores and develops databases. These NIR laboratories can
compute predictions even without knowing the type of sample being analysed. Remote instruments
can be used by an operator with very little training and the NIR expertise are required only at the cen-
tral laboratory.
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