
Comparisons of PLS and MLR Calibrations for NIR Prediction of Grains
P. Williams

Comparison of calibrations based on
partial least squares and multiple linear
regression for near infrared prediction
of composition and functionality in
grains
Phil Williams
Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main Street, Winnipeg, MB
R3C 3G8, Canada. E-mail: pwilliams@cgc.ca.

Introduction
While neural network and genetic algorithm software patiently await their turn on the near infrared

(NIR) stage, by far the majority of the calibrations in the thousands of NIR instruments employed in
the working environment have been developed by multiple linear regression (MLR) or partial least
squares (PLS) regression. Filter instruments still carry the heaviest burden of day-to-day grain analy-
sis, although the rugged monochromator-based instruments are increasing in adoption as the older fil-
ter instruments are retired. Most filter instruments carry MLR-based calibrations, while the bench-top
monochromator instruments in most common use are calibrated using PLS regression.

The use of PLS regression in NIR technology has been expertly described by Martens and Næs in
1987.1 Since then a mild controversy has emerged, with one group favouring MLR and the other PLS.
The optical data used by MLR in selection of wavelengths for calibration are highly correlated with
one another and multi-collinearity is an ever-present hazard in deriving equations for prediction of
composition or functionality by MLR. Partial Least Squares regression is based on the incorporation
of principal components, which are derived from variance in spectral data and are orthogonal and ref-
erence data. As a result the possibility of erroneous conclusions drawn as a result of multi-collinearity
is eliminated.

In theory PLS regression should mark an improvement over MLR. The speed of modern personal
computers has facilitated comparison of MLR and PLS regressions derived from the same optical data.
This publication presents seven such comparisons, using grain data. These range from “Difficult”
studies wherein the NIR predictions are based on the influence of an infestation, or weather conditions
on the texture of the grain, to the very “Simple” prediction of protein content in wheat flour.

Methods
Whole-kernel wheat samples were culled from railway carload deliveries at terminal elevators in

Vancouver, Canada. Whole-kernel barley samples were culled from the western Canadian bar-
ley-breeding programme at Lacombe, Alberta, Canada. Whole-seed canola samples were selected
from farmer’s deliveries during the annual harvest surveys conducted by the Grain Research Labora-
tory of the Canadian Grain Commission. Flour samples were selected from plant breeders’ annual tri-
als tested at the Grain Research Laboratory. Comparisons 1–5 were carried out on whole seeds. Flour
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for comparisons 6 and 7 were milled at the Grain Research Laboratory, using the Allis–Chalmers labo-
ratory flour mill. Analytical reference methods for oil, moisture, protein and ash contents are available
on request, as are those for the determination of DON and Falling Number. True metabolisable energy
(TME) was determined by the method of Zhang et al.2

Foss/NIRSystems NSAS software was used for the development of all calibrations, by MLR or
PLS. The PLS calibration equations were derived using optical data transposed into the same mathe-
matical format as that determined by optimisation, using MLR (forward stepwise regression). In all
cases of PLS calibration, scatter correction methods were applied using the comprehensive WINISI
software, but no improvement was gained by application of scatter correction.

Results and discussion
Table 1 summarises the statistics derived from the prediction studies by MLR and PLS. All of these

data were the result of careful optimisation of mathematical treatment of the optical data. In all seven
cases, differences in the values for SEP and RPD (4) were small and not statistically significant. In
comparisons 3 and 7 PLS was slightly superior to MLR. The other five comparisons were essentially
equal (for example, Nos. 2 and 5), or MLR was slightly superior.

Tables 2–8 provide details of the wavelengths selected by MLR, together with the areas of wave-
length where display of the “weights” derived during development of PLS calibrations showed the de-
gree to which variance in data was used in compiling the equations. This is illustrated further by
Figures 1–4, which show the weights derived from the first two PLS factors for four of the compari-
sons. Several areas occurred where similar wavelengths were selected (by MLR) or employed in the
development of the PLS equations, as indicated by the distribution of the weights. Consequently it is
not surprising that the MLR and PLS approaches were essentially similar in their efficiency.

Columns 6 and 7 of Tables 2–8 illustrate the degree to which individual PLS factors “accounted
for” the total variance upon which the equations were based. Four features were apparent:
1. The efficiency in prediction was not necessarily related to the degree to which total variance was

accounted for (for example, FN and DON).
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Constitutent Commodity MLRa PLS

N λs r SEP RPD Factors r SEP RPD

DON Wheat 53 8 0.856 0.744 ppm 1.92 10/11b 0.853 0.750 1.91

FN Wheat 174 9 0.772 44.1 seconds 1.57 14/1 0.771 44.2 1.57

TME Barley 56 8 0.942 0.223 units 5.14 7/14 0.944 0.218 5.26

OIL Canola 52 8 0.969 0.818 % 4.07 8/14 0.958 0.954 3.49

Water Canola 52 2 0.992 0.458 % 8.76 5/13 0.991 0.500 8.02

Protein Wheat flour 104 6 0.998 0.108 % 14.26 9/12 0.997 0.121 12.73

Ash Wheat flour 95 8 0.904 0.022 % 2.34 12/13 0.917 0.021 2.50
aMLR = multiple linear regression; PLS = partial least squares regression; DON = deoxy-nivaleno; FN = falling num-
ber; TME = true metabolisable energy; N = number of samples in predicition sample set; λs = number of wavelength
points used in calibration equation; r = coefficient of correlation; SEP = standard error of prediction; RPD = ration of
standard error of prediction to standard deviation of reference data in predicition sample set.
bNumber of factors used in predicition equation/theorectical number of factors as identified by PLS software

Table 1. Prediction statistics for all comparisons.
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2. All factors subsequent to the first factor used in development of the Falling Number prediction
equation were most likely related to system noise, rather than true variance in optical or reference
data.
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MLRa

D1OD 10/4
PLS

weights
Proportion of total

variance per PLS factor

λ (nm) F Assoc.λ (nm) Source Factor Proportion

1840 1 + – – 1 21.6/ 21.6b

2220 3 + 2214 1 2 26.2/   4.6b

1200 7 + 1206/1204 1/2 3 64.0/ 37.8b

1280 2 + 1280 1 4 66.7/   2.7b

1360 5 – – – 5 68.7/   2.0b

2440 4 – 2442 3 6 71.6/   2.9b

1520 8 – – – 7 76.2/   4.6b

2280 6 + 2278/2276 2/3 15 89.7/ –b

aMLR = multiple linear regression; PLS = partial least squares regression; S = small; M = medium; L = large (“bands”)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 2. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: deoxy-nivalenol (Fusarium Head Blight/“Scab”) in wheat.

MLRa

D2OD 20/10
PLS

weights
PLS proportion of total
variance per PLS factor

λ (nm) F Assoc.λ (nm) Source Factor Proportion

1264 2 – 1262/1262 2 S/3 S 1 35.0/ 35.0b

1924 3 – 1930/1920 1 VL/2 VL 2 37.1/   2.1b

1864 4 – 1860/1862 1 VL/2 VL 3 38.4/   1.3b

2084 7 + – – 4 41.0/   2.6b

2144 6 – 2150 2 VS 5 44.4/   3.4b

1184 1 – 1194 2 VL 6 48.2/   3.6b

1364 5 + 1374 1 M 7 49.8/   1.6b

2404 9 + 2412 3 M 8 52.0/   2.2b

1984 8 + – – 15 58.1/      –b

aMLR = multiple linear regression; PLS = partial least squares regression; S  = small; M = medium; L  = large;
V = very (“bands”)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 3. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: falling number in wheat.
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3. The pattern of the degree to which variance was accounted for by sequential PLS factors differed.
In some cases, such as canola water content and flour protein content, most of the variance was ac-
counted for by the first two factors and over 97% of the total variance by as few as three factors. In
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MLR*
D2OD 4/10

PLS PLS Proportion of total
variance per factor

λ (nm) F Assoc. λ Source Factor Proportion %

2420 4 2412 2 M 1 73.1/ 73.1b

2360 6 – 2360 2 S 2 78.1/   5.0b

1560 1 1568/1558 2 VS/3 S 3 81.4/   3.3b

2280 3 – 2284/2278 1 L/3L 4 82.6/   1.2b

1720 5 1722/1720 1 M/2S 5 84.8/   2.2b

2140 7 2144/2134 3 S/2 VS 6 85.9/   1.1b

1260 8 P 1268 1 S 7 89.1/   3.2b

2400 2 – 2394/2412 1 M/2 M 15 98.0/      –b

aMLR = multiple linear regression, PLS = partial least squares regression; P = poor; S = small; M = medium; L = Large
(V = very)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 4. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: true metabolisable energy in feed barley.

MLR*
D20D 4/4

PLS PLS Proportion of total variance per
factor

λ (nm) F Assoc. λ Source Factor Proportion %

1440 2 + 1436 2 M 1 73.8/ 73.8b

1860 3 + 1872 3 VL 2 87.4/ 13.6b

1380 4 – 1386/1386 1 M/3 VL 3 91.1/   3.7b

1220 1 – 1218/1214 2 S/3 S 4 92.9/   1.8b

2420 7 + P – – 5 93.7/   0.8b

1500 6 + 1516 3 S 6 95.3/   1.6b

2400 8 + VP – – 7 95.6/   0.3b

1260 5 – 1254 2 VS 15 99.2 /     –b

aMLR = multiple linear regression, PLS = partial least squares regression; P = poor; S = small; M = medium; L = Large
(V = very)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 5. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: oil content in canola seed.
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MLRa

D2OD 4/10
PLS PLS Proportion of total variance per

factor

λ (nm) F Assoc. λ Source Factor Proportion %

2020 1 - 2016 1 M 1 74.1/ 74.1b

2420 5 + 2420 1 VS 2 99.0/ 24.9b

1980 3 - 1980/1984 1 M/2M 3 99.2/   0.2b

2080 2 + 2084/2086 1VS/2M 4 99.4/   0.2b

1460 4 + 1476/1454 1 S/1/S 5 99.6/   0.2b

2100 6 + 2086/2096 2 M/3 VS 15 99.9/ –b

aMLR = multiple linear regression, PLS = partial least squares regression; P = poor; S = small; M = medium; L = Large
(V = very)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 7. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: flour protein content.

MLR
a

D2OD 4/10
PLS

PLS Proportion of total
variance per factor

λ (nm) F Assoc. λ Source Factor Proportion %

1840 1 + 1866/1886 2 M/3 VL 1 94.2/ 94.2b

1400 2  – 1410 1 VL 2 96.2/   2.0b

– – – – 3 97.6/   1.4b

– – – – 4 98.4/   0.8b

– – – – 15 99.8 –b

aMLR = multiple linear regression, PLS = partial least squares regression; P = poor; S = small; M = medium; L = Large
(V = very)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 6. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: water in canola seed.

Figure 1. Distribution of weights consequent
with development of PLS equations for the pre-
diction of Vomitoxin (Deoxy-nivaleno) in wheat.

Figure 2. Distribution of weights consequent with
development of PLS equations for the prediction
of water in Canola seed.
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the case of FN in wheat, TME in barley and water content in canola after the first factor, the remain-
der appeared to contribute little to the equations, but even in the water calibration, the best PLS pre-
dictions required at least five factors.

4. In comparisons 1 and 7 the progression in “accountability” of variance by individual factors was
not regular in that Factor 3 was apparently significantly more important than Factors 1 or 2 in de-
velopment of the equation. In comparison 7, the degree to which the first five factors apparently ac-
counted for variance was quite different from that of all other comparisons.
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MLR*
D1OD 10/20

PLS PLS Proportion of total variance per
factor

λ (nm) F Assoc. λ Source Factor Proportion %

1620 9 + VP – 1 12.8/ 12.8b

1660 6 + 1660/1664 2/4 2 29.3/ 16.5b

1460 1 + 1464 2 3 31.5/   2.2b

1740 5 + 1738/1746 1/4 4 50.1/ 18.6b

1960 4 – 1956 3 5 62.3/ 12.2b

2380 3 – 2368/2384 2/3 6 68.4/   6.1b

1680 7 – 1678 4 7 71.8/   3.4b

1160 8 – VP – – 8 80.2/   8.4b

1700 2 + – – 15 92.6/ –b

aMLR = Multiple Linear Regression; PLS = Partial Least Squares Regression; λ = wavelength selected by MLR;
Assoc. λ = wavelength identifiable from PLS “Weight”, corresponding most closely to wavelength selected by MLR;
Source = PLS “Weight’” for the respective factor; Proportion % + proportion of total variance accounted for by indi-
vidual PLS factors; VP = Very Poor (low) F-value (less than 5)
brunning total variance accounted for/proportion of variance accounted for per factor

Table 8. Association between wavelengths selected by MLR and weights generated during develop-
ment of PLS calibration equations: flour ash content.

Figure 3. Distribution of weights consequent
with development of PLS equations for the pre-
dictions of protein in wheat flour.

Figure 4. Distribution of weights consequent with
development of PLS equations for the prediction
of ash in wheat flour.
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Conclusions
1. For a wide range of applications to grain analysis by NIR spectroscopy, the MLR and PLS methods

were essentially equivalent in their efficiency in enabling prediction.
2. The most apparent reason for this is the fact that in computing the equations both approaches used

optical data associated with similar wavelengths.
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