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Introduction 
Infrared spectroscopy is a powerful analytical tool for determining various constituents in 

agricultural and food products because it is a fast, non-destructive, multi-analytical technique and it 
is not dependent on highly skilled personnel to operate the instrumentation.1 

Chemometric methods, such as point-by-point analysis of variance (ppANOVA), principal 
component analysis (PCA), discriminant factor analysis (DFA) and partial least squares regression 
(PLS) can be used to detect and extract the information contained in infrared signals, and then 
optimise the use of that information for a particular application.2,3 

The signals observed in the NIR region correspond to combinations and harmonics of the 
fundamental molecular vibrations observed in the Mid infrared (MIR) spectra. Therefore, it should 
be possible to have a better assignment of the NIR wavelengths by studying the two signals 
conjointly. The combination of the two signals should also increase the predictive ability of 
regression or discriminant models created using multivariate chemometric methods. This 
simultaneous analysis may be done by outer product analysis (OPA) which can reveal how the 
signals vary simultaneously as a function of some property, such as physico–chemical parameters. 

The OPA calculates for each sample the product of intensities at all combinations of frequencies 
in the two domains to produce an outer product matrix. The complete set of OP matrices may then 
be analysed using chemometric techniques such as PCA, FDA or PLS. Plots of loadings, B 
coefficient and discriminant function are drawn to visualise the simultaneous variations in the two 
domains as a function of the predicted property or classification criterion. 

In this study, this method is used to characterise nine groups of vegetable oils and to classify 
them as a function of their physico-chemical properties. 

Materials and methods 

Data set 
� Vegetable oil samples : olive oil (ov, ovv), sunflower (tb), soy bean (sr, sh), peanut (ar), 

grapeseed (pr), sesame (se) and a mixture of refined oils (mr). 
� Samples were provided by Bipea "Bureau inter-professionnel d’études analytiques". 
� The values for a range of physico-chemical properties of the samples were obtained from 

inter-laboratory analyses. 
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Apparatus 
A Fourier transform NIR and MIR spectrometer (Bruker Vector 33) with spectral acquisition 

software 'Opus' was used to do the measurements. 

Acquisition parameters : 

 
 NIR MIR 

Mode of acquisition Diffuse reflection 
(Thoma cell) 

Attenuated total reflection 
(ATR)—ZnSe 

Detector Integration sphere DTGS 
Spectral range 4000–9500 cm–1 700–4000 cm–1 
Resolution 4 cm–1 4 cm–1 

Sample scans 64 64 

Reference scans 64 64 

Reference Air Air 

 

Chemometrics 
� ppANOVA - calculates for each variable, one after the other, the part of the total 

variability due to the samples belonging to particular groups. It also calculates the residual 
variability not due to the groups.6 
� PCA - A set of n linear combinations (PC1 - PCn) of the n original variables (X1 - Xn) : 

 PCi = X1 . ui1 + X2 . ui2 + ... + Xn . uin  (1) 

 PCi = X . uT (2) 

Calculated so that the first PCs point in the direction of greatest dispersion of the samples in the  
variable space. These PCs may be viewed as a set of new axes in the multidimensional space of 
the original variables.6 
� PLS - models the relationship between a set of predictor variables X (n objects x k 

variables) and a set of response variables Y (n objects x m responses).4 
In this study, there is only one response (physico-chemical parameter), so Y has dimensions (n 
objects × 1 response). 
The PLS regression procedure may be written as : 

 Y = XB + E (3) 

The regression model is generated by calculating the B coefficients matrix that minimises the 
error matrix E. 
� OPA – For each sample, the Outer Product (OP) calculates the product of the intensities 

for all combinations of frequencies in the two domains. The two vector-signals of each sample 
thus give an OP matrix. 
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Therefore, for each sample, the values of one signal are weighted by the values of the other. 
For each sample i, if we have two initial signal-vectors x and y, the vector xT

i (1,m) in the X 
domain is multiplied by the vector yT

i (1,p) in the Y domain to obtain an OP matrix for the 
sample i with a size (m, p).  
The OP matrix of sample i can be unfolded to give an OP vector of size (1,m*p).  
For the n samples, the n OP vectors are concatenated to give a matrix K (n,m*p). 
The analysis of the matrix K gives us as results vectors such as b coefficient, loadings and 
discriminant factors of sizes (1,m × p). 
These vectors are then folded back to give outer product (OP) matrices which facilitate the 
detection of relations between the variables in the two domains (Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Principle of outer product analysis. 
 
Using techniques like ppANOVA, PLS, PCR, it is possible to selectively highlight a particular 
source of variation. 
By selecting profiles through the resulting folded OPA matrices, it is possible to artificially 
increase the resolution of signals. 
 

Results and discussions 

FDA on MIR and NIR 
To see the distribution of the samples and to maximise the separation of the predefined groups, 

an FDA was applied on the matrix created by performing OP between the MIR and NIR spectra of 
the oils after centring and reducing the columns in the matrix, corresponding to the variables. 

The results show that the greatest separation of the samples is along the first discrimant factor 
(DF1) where the olive and the peanut oil groups are separated from the other oil groups (Figure 2). 
The rate of correct classification of the samples into the oil groups is higher with the OP 
(MIR⊗NIR) than with the two sets of spectra taken separately. 
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Figure 2. Scatter plot of DF1 vs. DF2. [♦ar x ov ٭ ovv • pr – sr — sh + se ■ tb ▲ mr]. 

PLS on MIR and NIR  
Regression models were built as a function of the two physico-chemical parameters: 

unsaponifiables (INSAP) and the sterols (STER). These models were created by using partial least 
square regression (PLS) on the standard normal variant (SNV) pre-treated MIR and NIR matrices. 

The number of the latent variables (LV) used to build each predictive model for each parameter 
was determined by internal cross validation (leave-3-out). 

The folded b vector was plotted to see how the spectral regions behave with the variation of each 
parameter in the samples (Figures 3 and 4). 

In Figure 3, the regions of the folded b vector which are positive are correlated with the 
evolution of the INSAP parameter in the samples. These regions correspond to the following 
simultaneous variations of two sorts of correlation: 

1) the 1st overtone of –C–H of saturated hydrocarbons in NIR at 5683 and 5810 cm–1 with: 
725, 1039, 1081, 1120, 1137, 1166, 1187 and 1242 cm–1 in MIR. 

2) the 1st overtone of =C–H of unsaturated hydrocarbons in NIR at 5995 and 6040 cm–1 with: 
916, 950, 968, 985, 1068, 1106, 1153 and 1390 cm–1 in MIR. 

For the regions which are negatively correlated, the simultaneous variations evolve in the opposite 
way to the INSAP. These regions correspond again to two sorts of correlation:  

1) the 1st overtone (ov) of –C–H of saturated hydrocarbons in NIR at 5683 and 5810 cm–1 with: 
916, 950, 968, 985, 1068, 1106, 1153 and 1390 cm–1 in MIR. 

2) the 1st ov. of =C–H of unsaturated hydrocarbons in NIR at 5995 and 6040 cm–1 with: 
725, 1039, 1081, 1120, 1137, 1166, 1187 and 1242 cm–1 in MIR. 
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Figure 3. Comparison of the scatter plot of LV1 vs. LV2 with the folded b vector for the prediction 
model for INSAP (2LVs, RMSEC 16.5%). [■ ar x ov ٭ ovv • pr – sr — sh + se ♦ tb ▲ mr] 
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Figure 4. Comparison of the scatter plot of LV1 vs. LV2 with the folded b vector for the prediction 
model for STER (2LVs, RMSEC 21.18%). [■ ar x ov ٭ ovv • pr – sr — sh + se ♦ tb ▲ mr]. 

 
In the literature,5,8 the attributions of the peaks in the fingerprint region of MIR is still somewhat 

ambiguous but these results show, through the correlation with the NIR bands, that one series of 
peaks is clearly associated with unsaturation and another series with saturation. We can also see that 
the peaks in MIR which are positively related to the bands in NIR corresponding to the unsaturated 
bonds, are negatively related to bands in NIR corresponding to saturated ones, and vice versa. 

In figure 4, we can also notice two sort of correlation in the folded b vector,: 
1) positive correlation (related to simultaneous variation evolving in the same direction as 

STER) for the 1st ov. –C–H of saturated hydrocarbons in NIR at 5681 and 5828 cm–1 and 
negative correlation (related to the simultaneous variations evolving oppositely to STER) for 
the 1st ov. of =C–H of unsaturated hydrocarbons in NIR at 6040 cm–1 with: 

713, 732, 916, 939, 1039, 1081 and 1242 cm–1 in MIR. 
2) positive correlation for the 1st overtone –C–H of saturated hydrocarbons in NIR at 5681 cm–1 

and 5828 cm–1 and for the 1st overtone of =C–H of unsaturated hydrocarbons in NIR at 6026 
cm–1 with: 

1114, 1147 and 1166 cm-1 in MIR. 
By comparing the correlations for the two parameters (INSAP and STER), it can be seen that 

most of the MIR peaks are the same and behave in the same way in relation to saturation. This can 
be explained by the fact that sterols are an important part of the unsaponifiables. 

Conclusion 
PCA and PLS applied to the OP matrices highlighted simultaneous variations in the two 

domains as a function of the classification criteria INSAP and STER. By examining the relations 
between bands in the two domains related to the property being predicted, they also allow us to have 
a better understanding on how and why the variables contribute to the model. 

The combination of the two domains allows the extraction of complementary information about 
spectral characteristics of the oils. 

OPA facilitates the interpretation of differences between samples. It has the advantage of being 
able to produce predictive and discriminant models, something which is not possible with other 
methods of combining spectra, such as classical 2D Correlation Spectroscopy. 
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