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Introduction 
An important step in the statistical model development is the selection of principal components 

and their number. The most commonly used methodology (Naes and Martens) adds principal 
components in order of explained variance until validation shows that there is no significant 
improvement in the prediction. This procedure is developed during the cross validation.1 

This technique can be very useful in data problems involving minimal distributional 
assumptions.2But we necessarily must analyse our prediction model overfitting phenomenon, 
otherwise our model would underestimate the error expected prediction rate with excessive 
components number, like Herwig Friedl and Erwin Stampfer explained.2 

Methods 
Calibration process 

For obtaining reliable models we have developed a strategy (see Figure 1) for principal 
components number determination by PLS regression and cross validation with Burman 
recommendations on building a cross-validatory method also called “corrected h-block cross-
validation”.2 

On this strategy we have made a script program with Matlab 6.3 version and the Fastmcd,3 
Rapca,4 and Savitsky–Golay algorithms, and it has been proved with data from the spectra obtained 
to predict the fat percentage of commercial sliced sausages from a meat industry in Córdoba. (For 
more details about this data, you can find the proceeding entitled: “Utilization of NIR to predict the 
fat percentage on commercial sliced salchichón”). 

Independent test set creation (Burman criterion) 

The test set is a fixed fraction from either side of the total population distribution. The results for 
this criterion are shown in Figures 2 and 3 with different components number. 

Results 

Some results obtained by this strategy are given in Figures 2 and 3. 
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Figure 1. Calibration process diagram for principal components determination. 
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Figure 2. Overfitting phenomenon with four principal components, therefore we must reduce 
components. 

 
The overfitting phenomenon appears when we choose more components than we should do and 

is noticeable through the regression coefficients graphic and the difference between both error rate 
values (cross validation and external validation). When the overfitting is difficult to see, we must 
decide according to the best RMSEP. 

 

 
Figure 3. The best results are when we choose three principal components. 

 

Discussion 
The same data should never be used for training, optimising and validating the model. If you do 

not have external validation data to build your model you should use a strategy to obtain almost 
independent training and test sets, like Burman recommendations on Herwig Friedl and Erwin 
Stampfer article.2 
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