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Introduction 
Near Infrared (NIR) spectroscopy is commonly used to assess the composition of whole grains 

in a rapid and non-destructive way. Thus, large datasets have been gathered through the years on 
several NIRS instruments. Those datasets include different types of grain samples with regards to 
varieties, crop years, environmental/weather conditions, etc. Accurate generic calibration models 
require that these datasets be merged. 

However, before combining the data coming from different NIR instruments into a single larger 
set, the optical differences between spectra must be assessed and corrected if required. Inter-
instrument measurement variations can be considered as noise in the spectra. 

The objective of this paper is to quantify the noise robustness of different calibration models and 
determine noise stability areas where optical standardisation (before calibration) is not required 
before merging spectral datasets. The concept of model robustness is not straightforward. Several 
definitions of robustness can be found in the literature, but none has been issued by the International 
Standard Organisation. The notion of robustness is the capacity of a model to remain stable under 
small perturbations.1 The second objective of the paper is to design a simulation procedure to assess 
the robustness of multivariate models. 

Experimental 
Whole corn samples were scanned in transmission by Infratec Grain Analyzers, which are 

monochromator-based near infrared spectrometers manufactured by FOSS/Tecator (Höganäs, 
Sweden). The spectra contain 100 wavelengths in the 850–1050 nm range, with a 2 nm resolution. 
The Grain Quality Laboratory of Iowa State University (ISU-GQL), Ames, Iowa, has been 
collecting corn samples at harvest, during the years 1987–2002. Thus, the corn database comprises 
the variations in genetics, geography, growing conditions and physical characteristics of US Middle-
West corn. Reference values for the moisture content were obtained by air-oven method,2 performed 
by ISU-GQL. The corn moisture range was restricted to [8%; 25%], with an average of 14.7% and a 
standard deviation of 3.8%. The moisture database consisted of 3699 samples in total, split into a 
3289 sample calibration set and a 410 sample test set, using the venetian-blind technique. The 
moisture distribution of both sets was similar. 
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Theory 

Different types of noise 

The different types of noise that can be observed in NIT measurements were defined in 
cooperation with the Grain Inspection, Packers and Stockyards Administration from the US 
Department of Agriculture (GIPSA–USDA). In order to test the model robustness, the seven 
identified noises were simulated and introduced in the test set: 

1. random noise (RND): uncorrelated Gaussian noise was simulated by generating normally-
distributed values between 0 and 0.01% OD RMS 

2. multiplicative noise (MLT): the spectra were multiplied by a constant to simulate path 
length variations 

3. baseline shift (BLS): a baseline offset was added to the spectra to simulate wavelength-
independent gain variations. Wavelength shift (WLS): Monochromator wavelength-axis 
shift was simulated by shifting the spectra after a Spline interpolation between the original 
spectral wavelengths 

4. wavelength stretch or shrink (WLSt): monochromator wavelength-axis stretch/shrinkage 
was simulated by re-sampling the spectra after a Spline interpolation, maintaining the 
centre of the spectra at 950 nm 

Stray light (STL): The effects of stray light can be simulated by transforming the individual 
components of an absorbance spectrum (A) using the following equation: 

( )100/*10log TStraylightA A
noisy +−= −   (1) 

5. Where A is the absorbance spectrum, and T is the mean transmission value of the 
spectrum. Bandwidth variations (BDW), simulated by convolving the spectra with 
functions to broaden or sharpen the spectra. The bandwidth function is assumed to be 
Gaussian and the result of the difference between two different functions is used to 
compute the noisy spectra. 

Experimental designs 

Two experimental designs were applied to assess and compare the model robustness. First, a full 
2-level factorial design was carried out to identify the noises that have a significant influence on model 
standard error of prediction (SEP). 128 (72) simulations were carried out, using the noise levels shown in 
Table 1. The confidence interval was computed using σ estimated by bootstrapping.3 Second, a surface 
response design was performed with the significant noises, to determine the noise stability areas for 
each calibration model as well as assess the behaviour of the model performance in every point of 
the noisy domain. 
Table 1. Factor levels for the 2 experimental designs. 

 Full factorial screening design 
Noise type Minimum Centre point Maximum 

1. Random (RND) –1 OD RMS (a) 0 OD RMS 1 OD RMS 
2. Multiplicative (MLT) –0.2 (=26 mm) (b) 0 (=30 mm) 0.2 (=34 mm) 
3. Baseline shift –1 OD (c) 0 OD 1 OD 
4. Wavelength shift –1 nm 0 nm 1 nm 
5. Wavelength stretch –1 nm 0 nm 1 nm 
6. stray light  0 0 1% 
7. Bandwidth 6nm FWHM(d)=7nm 8nm 

 
(a) Optical Difference 
Root Mean Square 
(b) simulated path length 
(c) Optical Difference 
(d) Full Width at Half 
Maximum 
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Models 

 Multivariate models were built on 3700 calibration near infrared spectra to predict the 
moisture content of whole corn kernels: linear multivariate models: partial least squares (PLS)4 
regression with three different pre-processing techniques: (1) mean-centred spectra (PLS), (2) 
standard normal variety 5 (SNV-PLS) to remove scattering effects, and (3) selecting a subset of 
wavelengths using genetic algorithms 6 (GA-PLS), since the more parsimonious the model, 
generally the more robust;7 

 local multivariate models: locally weighted regression (LWR)8, with mean-entered spectra 
(LWR) and SNV pre-processed spectra (SNV-LWR); 

 Non-linear multivariate models: Three-layer feed-forward artificial neural networks 
(ANN)9 were trained using error-gradient back-propagation algorithms and dynamic learning. 
The inputs were the first principal components computed on the normalised spectra. In order to 
avoid overfitting, two training strategies were applied: (1) a weight-decay method,10 called 
regularisation learning,11 that tries to force the weights towards zero to smooth the neural 
networks (r-ANN) and (2) a pruning technique,12 that iteratively pruned the least important 
neurons to optimise both the network structure and its generalisation performance (p-ANN). 

Robustness index 

The robustness index represents the stability area of the model. It is computed as follows: 

Robustness index (RI) : surface where SEP< 2 . SEPoriginal  (2) 

This is then the area in which the determined noises would not create more than twice the 
original standard error. The important point is that the broader the area or RI, the more stable is the 
model, and therefore the more desirable for use in large databases with larger noise potential.  

 

Results 

Full factorial screening design Significant effects 

Figure 1 is a “Pareto chart”, showing the effect of the individual noises by model type. The y 
axis is the average effect of each factor (noise) on the SEP, computed using the screening design 
results. The green horizontal lines show the confidence interval (computed by bootstrapping), to 
determine if the noise effects are significant. Figure 1 (h) shows the noise influence in average for 
all the models. Among the seven noises tested, three proved to have a significant influence on the 
overall model performances : the baseline shift (BSL), wavelength shift (WLS), and multiplicative 
noise (MLT), adding more than 0.1% point moisture to the SEP (SEPoriginal ≈ 0.4% of moisture) . 

 

Model comparison 

ANN were more sensitive to baseline shifts [Figure 1.(d,e)], whereas PLS and LWR were more 
significantly influenced by the multiplicative noise and the wavelength shift [Figure 1.(a,c,f)]. 

SNV pre-processing makes the models insensitive to multiplicative effects and baseline shifts 
[Figure 1.(b,g)], by construction, as explained in the following equations: 

( ) ( ) ( ) ( )constantconstant ×=+=
−

= xSNVxSNV
x
xxxSNV

σ
 (3) 
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Figure 1. Pareto charts : average effects of the 7 noise types on the model SEP 

Surface response design 

The three significant noises—baseline shift, wavelength shift, and multiplicative noise—were 
tested using a surface response design, as shown in Figure 2. In this case, the experimental design 
output (SEP) was also computed in six “star points”, in order to model the SEP in the entire noisy 
domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Surface response design : star design results for PLS model. 
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The behaviour of the multivariate model performance can be modelled within the area of interest 
for noise variations (Figure 3), based on the surface response design simulations. The dashed area 
corresponds to the Robustness Index computation, where the SEP is lower than twice the original 
SEP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. PLS model performance based on the surface response design simulations. 

Model comparison 

Figure 4 compares the robustness index of all the models; the higher the index, the more robust 
the models. The SNV pre-processed models are clearly the most robust ones. PLS model robustness 
can be highly improved by a post-regression bias correction (dashed bars in Figure 4), whereas the 
lack of robustness of ANN and LWR models are mainly due to a pure scattering (no post-regression 
correction improvement). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Robustness index comparison for all the calibration models. 
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Conclusions 
This method relies only on simulations to provide a direct assessment of the model robustness, 

when dealing with noisy spectroscopic measurements. The experimental design procedure helps 
determine the noises which have a significant effect on model performances, using as lower 
simulations as possible. Furthermore, surface response designs are able to provide 2nd order 
polynomial modelisation of the model performance behaviour within the noisy area. When merging 
spectral data coming from various instruments, the differences between these spectra correspond to 
the types of noise described in this study. Thus, the computation of the robustness index as well as 
the examination of the stability area is a decision-support system, allowing the user to decide 
whether an optical standardisation is required before merging datasets. It also helps identify the 
most suitable pre-processing techniques and models to apply to the merged dataset, depending on 
their robustness towards the main sources of noise.  
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