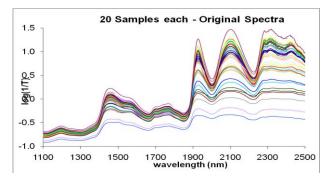
Near infrared spectra of rice grains with normal and extremely low phosphorus concentrations

Graeme D. Batten

Sea Spec Pty Ltd, PO Box 487, Woolgoolga, NSW, 2456, Australia Corresponding author: thebattens@bigpond.com

Introduction


The ability of NIR calibrations to predict phosphorus (P) is, at best, moderately reliable ($R^2 \sim 0.7-0.9$). This raises the question "How does P influence an NIR spectrum of plant tissue?" I am not aware of a publication which has examined the basis of a P calibration. This raises the concern that NIR spectroscopy is only able to determine P by an as yet unidentified inter-correlation effect. In cereal grains (such as wheat, rice and barley) and some other grains (maize), the majority (50 to 80%) of the P is in an organic form called phytate and this is found in the aleurone layer in the cereals. This raises another question when developing P calibrations for cereal grains. "Are NIR calibrations for P actually calibrations for phytate-bound- P with the estimation of total P being based on the high correlation ($R^2 = 0.98$)¹ between phytate-P and total-P?"The aim of this study was to compare spectra of grains with contrasting total P and, by association with phytate-P, levels.

Materials and Methods

Rice grains were obtained from the fertilized (control; normal) and the No-P fertilizer plots at the 2008 harvest of the long term (86 years) rice plots at Aichi Prefecture Experiment Station in Japan.² The grains were dehulled and 100 single grains from each treatment were analysed using a Foss NIRSystems 6500 spectrometer fitted with a transmittance single kernel sample presentation attachment. The scans (1100 – 2500 nm) for each treatment were averaged and the difference between the treatments plotted.

Results and Discussion

Grains from the control plot contained 0.33% P while grains from the No-P plots only contained 0.16% P. The raw, average, 2^{nd} derivative and difference spectra were examined and are presented as Figures 1-4

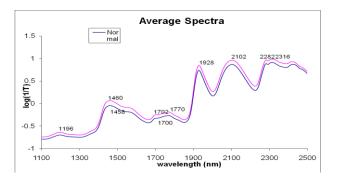


Figure 1. 20 spectra (log1/R) of control and low-P grains.

Figure 2. Average spectra (log1/R) of control and low-P grains.

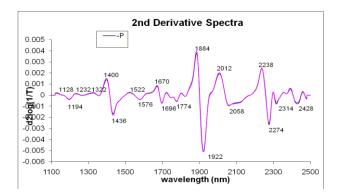


Figure 3. Average 2-Der spectra of control and low-P grains

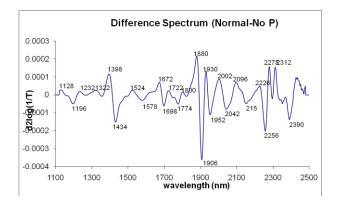


Figure 4. Difference between 2-Der spectra of control and low-P grains

There were differences between the average spectra of the control and No-P grains at about 25 wavelengths. The chemical bonds which are related to these wavelengths include mainly functional groups of carbohydrates and, to a lesser degree, protein (Table 1).

4

-

Table 1. Preliminary assignment of absorption bands.		
Peak (λ)	Assignment	Structure
1128	-	
1196	C-H str. second overtone	CH ₃
1232	C-H str. second overtone	СН
1322	-	
1398	2xC-H str. + C-H def.	CH ₂
1434	N-H str. first overtone	CONH ₂
1524	N-H str. first overtone	ROH
1578	O-H str. first overtone	Starch,
		glucose
1672	-	
1698	C-H str. first overtone	CH ₃
1722	C-H str. first overtone	CH ₂
1774	C-H str. first overtone	cellulose
1800	-	
1880	-	
1906	O-H str. first overtone	POH
1930	-	
1952	C=O str. second overtone	-CO ₂ R
2042	N-H sym. str. + amide II	Protein
	N-H sym. str. + amide III	CONH ₂
2096	2xO-H def. + 2xC-O str.	starch
2150	2xamide I + amide III	CONH ₂
2226	-	
2256	O-H str. + C-C str.	starch
2278	O-H str. + C-C str.	starch
2312	C-H str. + C-H def.	CH₃
2390	O-H def. second overtone	ROH

Reference paper as:

G.D. Batten (2012).NIR spectra of rice grains with normal and extremely low phosphorus concentrations,

in: Proceedings of the15th International Conference on Near Infrared Spectroscopy, Edited by M. Manley, C.M. McGoverin, D.B. Thomas and G. Downey, Cape Town, South Africa, pp. 372-374.

P is believed to regulate the deposition of K and Mg into grains and in this study, the grains from the No-P plots also had lower K and Mg.² Some influence on the spectra due to low levels of these minerals cannot be discounted. The difference spectra of the grains suggest that grains with lower concentrations of P have associated changes mainly in starch properties and to some extent protein. This is consistent with reports that inorganic P is maintained within narrow limits to maximise starch metabolism in developing grains. In this study, grains low in P were associated with slightly smaller grain weight and higher protein concentrations.

Conclusions

Using unique samples, this study has provided support for the hypothesis that P-calibrations based on NIR spectra rely on changes in the carbohydrate and protein in the tissues. Studies are required to assess the impact of changing the phyate-P : total-P ratio on the NIR spectra of cereal grains.

Acknowledgements

I am indebted to Dr Yukihiro Hamada for grain from the long term rice plots in Aichi Japan. Drs Sumio Kawano, Sirinnapa Saranwong and Woody Barton assisted with collection of the spectra.

References

- 1. G.D Batten, Cereal Chem. 63, 384 -387 (1986).
- 2. G.D. Batten, Y. Hamada and L.C. Campbell, In *Cereals 2005*, Ed by C. Blanchard, H. Troung, H.M. Allen, A.B. Blakeney and L. O'Brien (The Regional Institute Ltd., Gosford, NSW) pp 277-279 (2005).
- 3. B.G. Osborne, T. Fearn and P.H. Hindle, *Practical NIR Spectroscopy*, 2nd ed. Longman, UK. (1993).