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Introduction 
This work summarises the development, application and validation of an EC3

a
 system, and describes the 

configuration process for specific chemical properties, monitoring and classification of chemical images. An 

EC3 system encapsulates a high-speed hyperspectral imaging (HSI) camera paired with a data processing 

unit based on FPGA
b
 technology. Therefore, spectral image acquisition and spectral pre-processing, as well 

as feature extraction and feature processing, can be achieved in real-time. By applying chemometric models, 

the rather complex spectral information content of each spatial position observed is reduced to a distinct set 

of chemical information (object features). The transformation of this feature set into a chemical colour image 

(CCI) opens the possibility for processing spatial 2D-resolved molecular object information with well-

introduced standardised image processing methods. 

 

Hyperspectral imaging and image processing in the industrial field 
Both spectroscopy and image processing are powerful disciplines with great applicability for today's 

industrial solutions.
1,2

 While spectroscopy allows measurement of specific information from molecular 

structure, image processing methods primarily deal with information based on brightness or colour and 

geometrical (spatial) information of objects. Combining both technologies introduces numerous possibilities 

for industrial solutions. During recent years HSI systems have become more important for industrial 

purposes.  

Experience gained from working with HSI systems
3,4

 in industry has shown several limitations of this 

technology and numerous customer needs have been recognised. The biggest challenge of working with 

hyperspectral data in the industrial field is the large volume of data acquired and the complex nature of the 

data scanned. 

The HELIOS NIR
c
 system of EVK

d
 gives an impression of the total data load. Since the system has been 

developed to be limited only by the sensor readout speed, data volumes to be processed are bigger than 

400MBit.s
-1

. Due to the additional data dimension in the spectral direction of almost a few hundred 

wavelength positions, the data volume appears to be poor regarding the spatial resolution capabilities but 

huge in terms of data load per second. Especially when bulk sorting, the resulting spatial resolution (along 

transport direction and lateral to transport direction) barely meets expectations for most applications. The 

demand for hyperspectral imaging solutions has increased in recent years. Therefore it is reasonable to 

assume that much faster sensors will be standard in the future. Processing sensory data on contemporary PC 

systems is quite challenging. For future sensors with further increased resolution new processing strategies 

must be found. Also, in the rough industrial environment the transfer of the data from the camera might 

restrict several applications in the future. 

In addition to these hardware details, data processing and interpretation of hyperspectral data are 

complicated and time-consuming. Altogether, analysing a system using hyperspectral imaging needs a lot of 

time and expert knowledge. In terms of an in-line application these features are a problem. Compared to 

well-established image processing systems, the spectral information in the NIR is complex and not 

illustrative for non-experts. The interaction of maintenance or operational employees with the sensor system 

is therefore very restricted and in most cases not useful. 

Besides these technical limitations, the acceptance of hyperspectral imaging to machine builders is 

diminished by an additional fact: these companies want to gain their own application know-how and want to 

                                                           
a
 Result of the technology project EC3: EVK Chemical Colour Camera 

b
 Field Programmable Gate Array 

c
 Hyperspectral imaging camera system for the near infrared (NIR) 

d
 EVK DI Kerschhaggl GmbH, Raaba/Austria 

Reference paper as:
Burgstaller, M. and M. Pail, M. (2012).Novel possibilities for industrial solutions through chemical colour imaging - A bridging of
spectroscopy and industrial image processing, in: Proceedings of the 15th International Conference on Near Infrared Spectroscopy,
Edited by M. Manley, C.M. McGoverin, D.B. Thomas and G. Downey, Cape Town, South Africa, pp. 52-57.



   

define a unique selling proposition from this knowledge. This basic economic requirement is restricted by 

the necessity of continuous cooperation with the sensor supplier. 

 

The technology project EC3 
The technology project called EC3 aimed to fulfil customer needs and to overcome known limitations of 

contemporary hyperspectral imaging applications. All functionality gained in this project should be based on 

the existing hyperspectral imaging camera system HELIOS of EVK. The resulting sensor system therefore 

was developed with respect to an in-line application in an industrial field. 

The major goal of this work was to exploit the application of hyperspectral imaging systems by 

developing a simplified standard methodology for image processing. The work was based on the assumption 

that chemical information originally represented by spectra can be approximated by a strongly reduced set of 

material properties. Furthermore, the informational content in a property set per measurement point should 

be processed as relational information represented as colour information. For example, the relation of 

properties P1:P2:P3 = 3:2:1, where P1 = red, P2 = green and P3 = blue results in a brown colour. By 

processing data by colour, the processing of chemical properties by their relation is achieved. Respective 

variances of relational information should be established by defining a confidence space of chemical 

property relations, e.g. for classification. The spatial distribution information of property relation classes 

should enable the extraction of object properties, therefore enabling the decision related to the individual 

measurement object, e.g. sorting purposes. 

Since the main users of such a system were intended to be spectroscopy and chemometrics non-experts, 

e.g. machine builders and image processors, the configuration work regarding a hyperspectral imaging 

system must be dramatically simplified. For this purpose some methods are described which try to reduce the 

complexity of working with hyperspectral data. The project was ended by validation of such an in-line 

camera system. The industrial sorting of blueberries is given as an example of this process. 

 

Methods 
Here methods for establishing a straightforward approach to the application of chemical colour imaging in 

industry are described. Since both investigated technologies – image processing and multivariate data 

processing
6
 – have previously been well-explained, this work focuses mainly on describing the possibilities 

for combination. 

 

Previewing hyperspectral data cubes – Vis transformation 
The ability to transform spectral content into reduced but interpretable information facilitates the analysis of 

hyperspectral data. Here an unsupervised previewing method is outlined which enables the interpretation of 

chemical information in a spectrum in the way used for colour camera technology. The method roughly 

estimates the spectral content by 3 values gained from folding the spectra by 3 different “filter functions”. 

For each spectrum in a hyperspectral (HS) data cube, 3 values are calculated and represented as 3 individual 

matrices of size S × T (S = number of sample points along spatial domain, T = number of sample points 

along time domain). Before the assignment to the colour channels of a RGB image, the matrices are scaled 

relative to their maximum and minimum value to the range of the output format (e.g. 0-255 for standard 

colour images).  

Fig. 1 illustrates filter functions used and the result of this method applied to a HS data cube gained from 

measuring minerals of different categories. Before previewing, normalisation was applied to each spectrum 

in the cube. In Fig. 1 b) a lot of spectral details become “visible”; similar colours indicate spectra of similar 

spectral content and distinct colours indicate a distinct spectral content. 

 
a) 

 

b) 

 

c) 

 

Figure 1. a) Filter functions used. b) Result of the previewing method for minerals of categories: talc (upper row), 

magnesite (middle row) and calcite (lower row). c) Normalised reflectance spectra at spatial location denoted by the + 
markers in b). 
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Property extraction 
In this section multivariate data processing methods are utilised in an illustrative way to allow non-experts of 

chemometrics to extract essential information from spectral datasets. The beginning of this work should be 

facilitated through the answering of 3 questions. By doing so, the user is guided though the configuration 

dependent on their task. Each configuration method results in a set of linear models to describe specific 

properties of the focused measurement objects. 

The first question to be defined was: “What is the spectral content of the measurement objects?” For this 

purpose, principal component analysis
5
 (PCA) is applied to the selected spectra. The resulting loadings are 

applied to the HS data cube and result in a direct feedback showing the score images per principal 

component (PC). Because of the additional spatial information, these images are highly descriptive, allowing 

the user to explore the HS data cube regarding the variance information in selected spectra. Furthermore, if 

the analyses of chemically-different objects do not result in differences, other pre-processing methods might 

be necessary.  

In terms of measuring the similarity to defined objects (or locations on objects), partial least square (PLS) 

calibration
5
 is used. This method is introduced by the question: “Is it necessary to constrain colours to 

represent certain chemical characteristics?” Spectra of marked locations are calibrated to a chosen colour. 

The colours for all other spectra in the HS data cube are predicted and immediately visualised. The user can 

do a quick validation by comparing their expectations to the resulting colour image. Each colour channel is 

separately calibrated. Therefore, 3 PLS-1 calibration algorithms are used to allow prediction of the individual 

colour channels. To prevent calibration on spectrally identical objects, the warning in this question should 

make the user verify the presence of spectral differences by doing a PCA first. 

 

a) 

b)  

c) d) 

Figure 2. a) HS-Preview of polymers of category “PS” and “PVC”, blue coloured regions show the influence of water. b) 

Property-scores gained from PCA. c) Given colours of method “constrain colours” (green and red regions). d) Predicted 
colours of method “constrain colours”. 

 

The property scores shown in Figure 2 b) illustrate the spectral variances in the data; PC1 separates the 

categories and PC3 corresponds to water (shown in Figure 2 a)). Figure 2 d) summarises similarities to 

calibrated spectra at locations shown in Figure 2 c); objects of category “PVC” are shown in green colour. 

The similarity to the common spectral information of the given spectra (Figure 2 c)) is rather different from 

object to object but reasonably constant within an object. This can be explained by a rather constant chemical 

composition in the objects but slight differences in the chemical composition from object to object. 

The third question that can be answered is: “What is the proportion of ingredients?” As known from 

multivariate calibration the user has to specify given values for selected spectra. By using PLS a calibration 

model is calculated and applied to the HS data cube showing the prediction result as a spatially-resolved 

image. 

 

Property relations – combining and scaling 
As mentioned before, such a camera system exploits the combination of multivariate and image processing 

by combining chemical properties to relational information expressed as colour information. The 

combination of properties is done by the user by selecting 3 different linear models gained from property 

extraction. Before assigning the resulting property score matrices to the colour channels of a RGB image, 

each property score matrix has to be scaled to the value range of the RGB image (0-255 for standard colour 

images). Scaling can be done with respect to the value distribution of the property scores by applying the 

linear model to the HS data cube or by applying it to selected spectra. When scaling to the scores image of a 

HS data cube, surrounding objects might influence the scaling result (selected objects are not properly 

visualised). In case of scaling to the scores of selected spectra, unselected spectra of the same object might 

become over- or under-steered if their score value is out of the score value range of selected spectra. 

PE 
PVC 
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Processing of chemical colour images 
Since the spatial 2D-resolved chemical relation information is represented by a standardised colour image 

format all capabilities of image processing can be exploited.
1
 The transformation of the chemical RGB-

information into the HSV-space
6
 (Hue, Saturation and Value or intensity) for example enables the separation 

of the colour impression (relation of chemical properties) from the intensity and therefore the absolute value 

of chemical properties. Furthermore, a decision per spatial object can be gained by applying object 

recognition
7
 algorithms and by evaluation of the spatial distribution of chemical information. Noisy 

information may be processed when applying image filtering techniques.
8
 

 

Validation by industrial application of an EC3 system to sorting blueberries 
During blueberry sorting, foreign materials like leaves, stems, bugs, stones, glass, metals and cap stems 

(stem rising from a fruit) have to be detected and separated. 

 

System setup 
Frozen blueberries (-15°C to -25°C) were sorted. The material was inspected in free fall processing, reflected 

light from the objects was collected along an illuminated line lateral to the falling direction. To be able to 

inspect the whole surface of objects, 2 HELIOS systems were used – one for inspection of the front and one 

for the backside. Table 1 summarises important instrumental parameters. 

 
Table 1. Key parameters. 

Spatial resolution (in falling direction) 2 mm (approx. 5 pixels in height for blueberries) 

Spatial resolution (lateral to falling direction) 1.25 mm (approx. 8 pixels in width for blueberries) 

Integration Time 2 ms 

Spectral resolution  5 nm 

Spectral range 1100 – 1500 nm 

Sensor value range 0 – 4095 count (12 bit) 

Pre-processing First derivative, maximum normalisation 

Background Treatment When mean intensity < 180 count 

Capacity of the sorting machine Up to 1500 kg.hl
-1

 at 600 mm working width 

 

Strategies for property extraction and relations 
The configuration strategy of the EC3 system describes the material to be sorted by three properties: “Similar 

to blueberry”, “wooden” and “Similar to bugs”. In addition, NIR-inactive materials like glass should be 

separable from background through evaluation of the mean intensity reflected by parts compared to a stable 

“black” background. This functionality is provided by HELIOS by combining the colour information with 

the feature “mean intensity”. Table 2 summarises the chemical colours. 

 
Table 2. Chemical colour information versus object types. 

Chemical colour information Chemical property Object type 

Green Similar to blueberry Blueberry 

Red “wooden” Stem, leaf, wooden parts 

Blue Similar to bug Everything f bug-like chemical 
nature e.g fly, beetle.  

Yellow-orange (e.g. brown) Similar to blueberry and “wooden” in an 
undefined relation. 

A blueberry with a wooden 
influence, e.g. attached stems or 
leafs. 

Bluish-green, cyan Similar to blueberry and bug in an 
undefined relation. 

A blueberry and similar to bug.  

Dark gray, black Not similar or related to blueberry, 
“wooden” or bug. 

All objects which do not have 
aforementioned properties, 
e.g. stones, glass, plastic, metal. 

Pure white From objects with reflected intensity 
beyond a certain limit. 

Background 
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Configuration of property extraction and relation 
Sequences of a blueberry stream contaminated with stems, leaves and bugs were captured and visualised by 

the HS-previewing method. From the spatial representation and colour impression in the view, different 

object groups were recognised. Different spectral sets were taken from blueberries, isolated stems and leaves 

as well as bugs (pure objects). Applying PCA did not differentiate the objects – a configuration according to 

spectral variances was not possible because of the large noise content (caused by the short integration time 

and small objects) in the data. By means of the method “constrain colours” desired colours were assigned to 

the spectra of pure objects. As illustrated in Figure 3, spectra of blueberries and stems are not clearly distinct 

and noisy. 

 

Figure 3. First derivative and normalised spectra of blueberry (blue) and stems (green and red) in the range 1.1–1.5 µm. 

The lines represent the maximum of the value distribution per wavelength position. The shadows denote the σ-1 to σ-4 
region per distribution. 

 
Results 
Objects were scanned and monitored in the chemical colour imaging format. Figure 4 gives an overview of 

the results. 

 

a) b) c)  d) 

Figure 4. Chemical colour image of a) blueberry, b) leaf, c) blueberry with attached leaf and d) thin metal wire. 

 

As expected, the centres of blueberries were visualised in a pure green colour (not “wooden” and no 

similarity to bugs). At the borders, the green information decreases and some red information may appear 

(brownish colour in the first row of Figure 4 a)). This effect might be caused by reduced water information in 

the spectrum (decreased green – decreased blueberry similarity) and by increased “wooden” information 

(increased red) because of measurement of the skin. For experts in image processing, the detection of 

blueberries is simple because they always have a good portion of pixels in green. An example of the 

advantage of working with relational information is shown in Figure 4c). The rather small spectroscopic 

influence of a thin leaf attached to a blueberry means the chemical colour information at one end of the 

blueberry is in an indefinable state between pure red (“wooden”) and green (blueberry). Image processing 

enables pixels of impure colour to be considered the combination of the contributing objects. Table 3 

summarises the sorting accuracy for defined impurities. Each test was done with 30 pieces of each material 

group on the “free fall” sorting machine under real conditions. 
 
Table 3. Sorting results. 

Object Quantity [%] Reject Quantity [%] Quality Quantity [%] 

glass 100 100 0 

wood 100 100 0 

paper 100 100 0 

plastic 100 96.67 3.33 

insects 100 100 0 

metal 100 100 0 

BB 100 0 100 

BB with CS>5mm 100 96.67 3.33 

BB with AL>5mm 100 93.33 6.67 

(BB = Blueberry; CS = Capstem; AL = Attached Leaf) 
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Conclusion 
The EC3 technology is bridging the gap between spectral imaging and imaging processing. Processing the 

large datasets produced by a HSI system was simplified by representing the spectral information in the CCI 

format. As a result, the scanned chemical information becomes immediately comprehensible for the user, is 

easier to understand for non-experts of spectroscopy and can be refined by image processing. By applying 

image processing to chemical information, the spatial distribution of the measurement results can also be 

taken into account. Besides the chemical information, this additional information enables new industrial 

solutions, especially when applying object-based image processing algorithms. The classification of objects 

according to their chemical properties is done by well-established colour classification methodology. Due to 

the large reduction of data achievable by chemical properties extraction, the transfer of data to PC systems is 

not restrictive. The configuration of hyperspectral imaging systems and handling of data has been opened to 

non-experts of spectroscopy and chemometrics. 
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