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Introduction 
The science of near infrared (NIR) spectroscopy is used in agricultural research to explore the quality of a 

grain sample. The pioneering application of NIR technology in agriculture was for the prediction of moisture 

and protein content of grain.
1,2

 This application involved a calibration process during which a large set of 

samples were collected and analysed by both a chemical method and a spectral scan of the grain in order to 

derive a model to predict measured protein (or moisture) as a linear combination of wavelengths in the 

spectral data. Subsequent samples could then be scanned and the content of the protein or water predicted via 

the linear model. This approach removed the need for the slow, expensive destructive process of physical 

extraction of that compound for all grain samples.  

Following the early success of determining the content of simple compounds such as protein and water, a 

natural extension was to predict more complex traits arising from changes in the chemical and structural 

composition of grain to produce an end-product. For example, barley germinates to produce malt and then 

malt is fermented to produce wort for the production of beer. This sequence of processing introduces the 

notion of levels of degree of removal from the original grain sample which undergoes both physical and 

chemical changes to produce malt. This intermediate state is in turn processed into an end-product of beer. 

When grain is scanned using NIR spectroscopy, the degree of removal and hence difficulty in prediction of 

an end-product trait increases with the additional number of stages in the process.
3
   

Adoption of NIR predictions for more complex traits has been limited in scientific applications, as the 

accuracy and reliability of the method is solely dependent on the calibration process. Variability in the 

reference method is the major constraint on the calibration process. For example, when measuring the extract 

of malt from barley, the prediction of malt content from NIR spectroscopy can only be as accurate and 

reliable as the measurements made from a physical micro-malting process. As multiple parameters contribute 

to end product quality, the traditional approach has been to predict individual traits for each quality 

parameter from individual calibration equations e.g. malt extract, diastatic power, fermentability and soluble 

nitrogen for beer. The errors in calibration for each trait are then compounded when these independent 

predictions are combined in a multivariate analysis to predict overall grain quality. Furthermore, the 

calibration equations for different traits are often based on common wavelengths as the traits are inter-related 

and influenced by the same underlying chemistry.  

The protein-starch matrix that binds molecules together in the grain kernel regulates the ability of grain to 

undergo physical and chemical changes. When there is strong chemical coupling between the molecules in 

this matrix, the distinct vibrational behaviour of the independent components as measured by NIR 

spectroscopy is distorted. An analysis of complete spectra bypasses the need for calibration, and removes 

both the calibration error introduced and compounded through the prediction of each individual trait, as well 

as the potential loss of the dependence structure between wavelengths.  

A sample of grain sourced from a structured plant breeding program has the ability to produce a high 

quality end-product due to a range of factors. Accurate quantification of the variability due to these factors 

maximises genetic gain when selecting for superior traits. The two major factors contributing to grain quality 

are the inherent genetic potential within a plant and the influence of environment on plant growth and grain 

development. Advanced statistical methods are required to partition the information contained in the spectral 

response of grain into components due to genotype (G) and environment (E) arising from underlying 

moisture and fertility gradients in the field. 

Linear mixed models are routinely employed in cereal breeding programs in Australia for the analysis of 

agronomic traits of yield
4
 and grain size.

5
 These methods are based on spatial analysis to account for field 

trend
6 

and an appropriate underlying variance structure for genotype by environment interaction.
7
 A 

statistical model is proposed for modelling variation in the whole spectra and partitioning this into effects 

due to genotype and environment using a linear mixed model. The paper demonstrates that this approach can 
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be used for selection of genotypes in a cereal breeding program, removing the need for robust calibration 

equations for a broad range of quality parameters. The potential of the analysis for genetic selection is 

demonstrated using grain samples from an early generation field trial in an Australian barley breeding 

programme. 

 
Materials and Methods 
The dataset adopted for the case study of the whole spectra analysis method is taken from Stage 1 of testing 

in the northern node of the Australian barley breeding program in 2009. The field trial consisted of 1104 

plots arranged in a rectangular array of 24 columns by 46 rows and was designed as a partially duplicated 

spatial design with two replicates of 189 genotypes and single plots of the remaining 726 genotypes.  

Grain was harvested from the field trial and a subsample of plot yield was scanned through an 

NIRSystems 6500 using WinISI software. Spectra were exported as raw absorbance bands (log 1/R) for 

wavelengths ranging from 1100 to 2500 nm in steps of 2 nm, forming a total of 700 wavelengths. Existing 

calibration equations were used to predict various traits, but primarily hot water malt extract, the most 

important trait for the malting industry. Chemical analysis was undertaken on a small subset of samples 

measuring friability, malt extract, soluble and total nitrogen, wort β-glucan, diastatic power and 

fermentability as per the European Brewery Convention methods. The correlation between predicted malt 

extract from calibration and measured malt extract from the malting process in the laboratory was also 

calculated. 

A combined analysis was conducted for the whole spectra of grain samples with wavelengths ranging 

from 700 to 2500 nm in steps of 2 nm. The data were analysed in two stages due to the dimensionality of the 

problem. Firstly, a principal components analysis was conducted to reduce the spectra to five components, as 

these components accounted for 99.65% of the variation in the spectral data. The principal component scores 

were then analysed using a multivariate linear mixed model approach fitting terms for genotype and 

accounting for the spatial correlation at the field plot level.
6
 Variance heterogeneity between the five 

components was estimated at both the genotype and the field plot level. Variance parameter estimates were 

obtained using residual maximum likelihood (REML)
8
 and best linear unbiased predictions (BLUPs)

9
 of 

scores were obtained for the genotypes. The program ASReml
10

 was used to fit the linear mixed model and 

to form predictions. 

 

Results  
The first three components of the PCA model explained 98.8% of the total variation in the spectra. This 

variation was partitioned into genetic and non-genetic effects via the linear mixed model which explained 

58.3% and 40.5% of the variance, respectively. Spatial variation was evident and spatial correlations were 

estimated as 0.48 and 0.28 in the field column and row dimensions respectively. Key wavelengths with 

maximum loadings were determined and an example of the loadings for the wavelength at 1460 nm has been 

plotted on the biplot in Figure 1. Wet chemistry measurements from the subset of samples were correlated 

with the components and regressions for three of these quality traits are superimposed onto the biplot. The 

superposition of traits indicates an area of the biplot where genotypes possess favourable quality 

characteristics. Comparisons can be made relative to the standard genotypes that have been marked on the 

biplot. 

 

Discussion and Conclusion 
The factors contributing to measurement of grain quality, and indeed all agronomic traits, are the inherent 

potential within a plant due to genetic make-up, and the influence of environment on plant growth and grain 

development at the micro-environmental level due to field trends resulting from moisture and fertility 

gradients. The analysis proposed demonstrates that genetic and micro-environmental variation can be 

modelled from whole spectral data. Furthermore, the ratio of genetic to field plot variation is substantial 

(59:41) and is of an order of magnitude useful for making genetic gain. 

The calibration for malt extract in this study was reasonably reliable (r = 0.62), but not accurate enough 

for selection of genotypes. In general, calibration equations for prediction of traits in early generation 

material suffer continually from the introduction of new genetic sources which may lie outside the range of 

the set of samples used for calibration, going against recommendations for a robust calibration.
11

 

A sample of grain sourced from a structured plant breeding program has the ability to produce a high 

quality end-product due to a range of factors, and it is the accurate quantification and understanding of these 

contributing factors which maximises genetic gain when selecting for superior traits. Analysis of whole 

spectral data preserves the correlation between wavelengths and the inherent relationship between traits 
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Figure 1. A biplot of genotype scores with six labelled genotypes, and loading vector for one wavelength at 1460 nm. 

Vectors of wet chemistry measurements for the three traits of extract, nitrogen and diastatic power were superimposed 
onto the biplot via regression. 
 

measuring grain functionality. While calibration may be avoided, interpretation of patterns from whole 

spectral analysis still relies on laboratory measurement of key traits. These traits together with discriminating 

wavelengths must be superimposed on the pattern of response from whole spectral analysis to indicate 

favourable subsets of genotypes for further testing. Cluster analysis could also be used to group genotypes 

with superior mean performance of malt quality, as well as other traits. 

The large number of genotypes tested in the early stages of a breeding program, 915 in this study, 

prevents detailed and expensive quality testing on all samples. NIR can be used as a high throughput, low 

cost screening tool to indicate subsets of test lines with a favourable combination of quality characteristics, 

relative to the control genotypes. These test lines can then be taken for further detailed testing with some 

confidence by using the NIR screening as an indicator of underlying grain chemistry. 

Advanced statistical methods are required to partition the information contained in the spectral response of 

grain into components due to genotype and environment and the interaction between these, while 

simultaneously adjusting for the differences due to changing micro-environmental effects. While a two-stage 

exploratory approach was used in this study, extensions to a fully efficient one-stage analysis within a linear 

mixed model framework following the method of Smith et al.
7
 are under current research. 
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