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Introduction 
Different problems arising in chemometrics are studied along with their solutions using semidefinite 
programming (SDP). SDP is a technique for minimising convex functions over a set of positive semidefinite 
matrices1. The problem of finding sparse principal components for a matrix can be modeled as an SDP 
problem and solved efficiently for a pre-specified target sparsity value2. SDP can also be used for optimal 
distance metric learning3 and for the construction of quadratic decision boundaries in classification1,4. 
 
Materials and Methods 
In this section the semidefinite optimisation is presented and illustrated using some small examples. Then we 
proceed to applications in classification and to the computation of sparse loadings in principal components 
analysis (PCA). The classification procedure is applied to small artificial examples and the sparse PCA is 
applied on large scale spectroscopy and imaging data. 
 
Semidefinite programming – a short overview 
The classical form of an optimisation problem has variables stored in a vector nRx∈ . Let A be a matrix 
with mean-centered columns and covariance matrix C=ATA. The problem of finding the first principal 
component of A is equivalent to solving the optimisation problem 
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The objective function and the constraint are quadratic functions in the variable x. We now define a matrix 
variable X that models the product of two variables x as jiij xxX = (there are n2 variables in X). Given this 
identity, the quadratic function can be linearised in the higher-dimensional space defined by X. We obtain 
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where trace is a common notation for a linear function of a matrix variable X. The matrix X is now defined to 
be a rank-1 matrix according to jiij xxX = , i.e. TxxX = . Problem (1) can now be stated as 
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The objective and the first constraint are now linear in X and the second constraint requires X to be a 
(positive semidefinite) rank-1 matrix. The rank-1 constraint can be relaxed to 0X  (X is a positive 
semidefinite matrix, i.e. all eigenvalues are non-negative). The semidefinite variant of (1) can then be 
expressed as 
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The last constraint defines the set of positive semidefinite matrices which is a convex set (it is a so-called 
cone). Problem (3) is a linear SDP. Steps (1)-(3) are common when deriving a semidefinite relaxation of a 
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non-convex optimisation problem. In this case the relaxation is tight (i.e. identical to the original problem). 
Convex SDPs are solved efficiently using polynomial-time interior point methods1. This section ends with 
another example that models as an SDP problem. 
 
Example: The matrix completion problem. 
Given a covariance matrix with unknown element (x) at position (2,3). Let the matrix be 
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The problem is now to determine the maximal and minimal values that the covariance x between variables 2 
and 3 can attain. Since the covariance matrix is positive (semidefinite by construction), this problem can be 
solved as the two separate SDPs below 
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The optimums are max=5.52 and min= -0.95. So if [ ]52.5,95.0−∈x  then C is a valid covariance matrix. 
 
Quadratic classification 
In pattern recognition and classification problems we are given two (or more) sets of points in n-dimensional 
space, },...,{ 1 Nxx  and },...,{ 1 Myy , and we wish to find a function f that is positive in the first set and negative 
in the second. If such a separation is achieved, the function f perfectly classifies the points. If perfect 
classification is impossible, we usually seek a function that approximately classifies the points, for example 
one that minimises the number of misclassified points. This is a hard combinatorial problem and it is often 
relaxed to the standard (linear) support vector classifier for the sets },...,{ 1 Nxx  and },...,{ 1 Myy . 
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where e is an all-one vector with appropriate dimensions. The 
additional slack variables u and v model the amount of violation 
of points x and y. If u=0 then all x are correctly classified and if 
v=0 then all y are classified correctly. The width of the margin 
is

2
/2 a . The positive trade-off parameter γ gives the relative 

weight between the number of misclassified points (that we want 
to minimise) compared to the width of the separating slab (that we want to maximise). This problem is 
convex and the global optimum is obtained efficiently1,4. A simple classification is illustrated in  
Figure 1 (γ=0.5). In this case, seven points are misclassified and 14 lie within the slab. The linear support 
vector can be generalised to more complicated functional forms using a kernel function that projects the data 
into a higher dimensional space where linear separation is possible4. The solution to such a problem is called 
the least-squares support vector machine classifier (LS-SVM). The LS-SVM approach always involves 
parameter tuning to obtain a well-behaved kernel function and to avoid over-fitting. For a proper choice of 
the kernel function, the LS-SVM problem is convex. 

Using SDP we can construct a quadratic classification scheme that can be interpreted as an intermediate 
between LSV and LS-SVM. We introduce a quadratic function rxqPxxxf TT ++=)(  where P is a 

Figure 1. Illustration of a linear support 
vector on artificial data (γ=0.5). 
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symmetric matrix, q a vector and r a scalar. Using similar ideas and variables as in the (LSV) formulation, 
quadratic classification (QC) of two sets can be modelled as 
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where )(max2

PP λ=  (the largest eigenvalue of P) and qqq T=
2

 . If P=0 (null matrix) then QC collapses 
to ordinary LSV. The matrix variable P is constrained to be positive semidefinite. The quadratic function 
defines therefore an ellipsoid that, in an ideal case, encloses the points y. This SDP problem has a convex 
objective function and linear constraints in the matrix variable P, vector variable q and scalar variable r.  
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Figure 2. Illustration of quadratic classification. a) γ=0.3 leads to linear classification, b)  γ=1 leads to a quadratic surface 
and  c) γ=1, trace(P)=1 and k=1 leads to pure spherical classification. 
 
Some additional constraints that control the shape of the quadratic form can be included in (QC). The matrix 
P can be regularised by the constraint trace (P)=1; this constraint keeps the matrix P unique. In addition it is 
known that the function )(max Pλ  is convex and the function )(min Pλ  is concave with respect to the matrix 
variable P. This can, for example, be used to model an upper bound on the eccentricity of the ellipsoid by 
considering the constraint 
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where k is the positive upper bound. The left side of the last constraint 
defines a convex function (convex – concave = convex). In Figures 
2a-2c, quadratic classification is applied to the same artificial data 
used in Figure 1. In this case, the quality of linear and quadratic 
classification is almost identical; the number of misclassified points is 
7 in the linear case and 5-6 in the quadratic case. It is clear that (LSV) 
is a special case of (QC). It is certainly also possible to require the 
other set of points (+) to lie inside the ellipsoid (Figure 3). 
   
 
Sparse principal component analysis 
Principal component analysis is a well-established tool for analysing high dimensional data by reducing it to 
a lower dimension. Let A be any mean centered m/n matrix encoding m samples of n variables. The principal 
components are linear combinations of the original variables that point in orthogonal directions explaining as 
much of the variance in the data matrix A as possible. The weights of the original variables in the principal 
components are the loadings. Numerically, a full PCA involves a singular value decomposition of the data 

Figure 3: Illustration of quadratic 
classification around the other group. 
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matrix. The components are linear combinations of all original variables, i.e. most of the loadings are non-
zero. PCA facilitates model interpretation, visualisation and analysis by condensing the information to only a 
few components but the components themselves are still constructed using all original variables and may 
sometimes be difficult to interpret. In many applications, the coordinate axes involved in the components 
have a direct physical interpretation. In finance they can be specific assets, in biological applications specific 
genes and in spectroscopy individual wavelengths. In problems like these it may be desirable to seek a trade-
off between the two conflicting goals, namely statistical fidelity (explaining most variance) and 
interpretability (simple structure in components).  

Sparse PCA has been an active research topic during the last decade. The first ad hoc approach based on 
simple thresholding was proposed in 1995 by Jolliffe and Cadima5. The SCoTLASS algorithm by Jolliffe 
minimises the Rayleight quotient of the covariance matrix along with a Lasso penalty6. Shen and Huang use 
the SVD to compute low rank approximations of the data matrix with different penalties7. The two papers by 
d’Aspremont et al. develop a semidefinite approach to sparse PCA1,8. We review some results here.  

Given a vector nRx∈ . Let card(x) denote the cardinality of the vector x, that is the number of non-zero 
elements in x. Consider the problem of computing a cardinality constrained eigenvector that corresponds to 
the maximal eigenvalue of the covariance matrix 
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If k=n in (6a) we obtain (1). This is a hard combinatorial problem with exponential complexity. This means 
that large instances are impossible to solve in reasonable time. The basic idea is now to construct a 
semidefinite relaxation of this problem following the basic steps (1)-(3). In this case it will be a pure 
relaxation that only approximates the result in (6). A rank-1 constrained problem that is equivalent to (6a) is 
given in (6b). The objective and the first constraint are now linear and the rank-1 constraint can be relaxed. 
What about the cardinality constraint? The authors1,8 use a standard strategy to obtain a sparse vector, they 
replace the non-convex cardinality constraint by the weaker but convex constraint; the sum of all absolute 
values of elements of X should be less than or equal to the target cardinality k2. A semidefinite relaxation of 
problem (6) is now defined as 

(8a-b)   
 
 
 
 
The problem to the left has a target sparsity parameter k and a sparsity constraint. The problem to the right 
penalises sparsity in the objective using a positive parameter ρ  to control the magnitude of the penalty. For 
a certain pre-specified target sparsity k, it is possible to find a ρ -value that matches that sparsity. The SDP 
approach can be used to obtain sparse components for small and medium sized problems. Orthogonality 
between components can also be enforced in this setting.  

A related solution approach for formulation (8b) is developed in Journee et al.9. The method is called 
GPower to resemble its close connection to the traditional power method for computing eigenvalues. This 
method is very fast and can be applied to large scale problems. The method works in three steps: 1) 
initialisation; 2) fast optimisation to obtain a good sparsity pattern (position of zero elements) and 3) 
ordinary SVD on the reduced matrix (zero columns removed). The optimisation problem in step 2 has a close 
connection to (8b). The optimisation has a time complexity of O(mn) per component. We use this approach 
for large scale imaging data in next section.  
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The GPower method applied to imaging data 
The test data consists of hyperspectral imaging data of sandpaper with three different backing materials. The 
objective is to compare sparse PCA with full PCA. The sisuCHEMA hyperspectral camera (Specim, 
Spectral Imaging Ltd, Oulu, Finland) with a wavelength region of 1000 nm – 2498 nm (239 wavelengths) 
was used. 

Figure 4. 12x3=36 samples of glued sandpaper with three different backing materials and curing times from 1-8 hours. 
Score plots from Evince (middle); Original NIRS (12801 pixels, background removed) (left); Spectra pre-processed with 
snv and mean centered (210 wavelengths and 12801 pixels) (right). 
 
The experiment shows how to control the sparsity of the loading vector and how the explained variance 
depends on sparsity. We extract the first principal component for different values of the penalty parameter 
and register the corresponding sparsity value in percent; 0% means no sparsity (a dense loading vector) and 
100% mean maximal sparsity (0-1 non-zeros). The results are given in Figure 5. For example, a parameter 
value of 0.2 gives a sparsity of about 40%. This relationship is naturally data dependent. We also illustrate 
how the explained variance decreases along with increased sparsity. With a sparsity of 0-40%, the first 
sparse principal component explains as much as a dense component; for higher sparsity values, the degree of 
explanation starts to decrease.  
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Figure 5. Sparsity % for PC1 versus ρ -value (left). Variance explained in PC1 in % relative to PC1 in full PCA (right). 

 
In the next experiment we did sparse PCA on the imaging data and summarised the results in Figure 6. Three 
sparse components were extracted with sparsity of about 60% (~90 wavelengths). Three different backing 
materials were used and this is clearly reflected in the two distinct groups in the first score plot. Two of the 
backing materials were very similar. The score plot is essentially identical to that of the full PCA. The 
explained variance is shown in the scree plot. For sparse PCA, the measurement of adjusted variance is used 
according to the recommendation in Shen and Huang7. This is due to the possibility of non-orthogonal sparse 
components. The scores in PC1 are very similar in both the sparse and full cases. The sparse loadings contain 
a few major peaks that are formed by adjacent wavelengths. In this case, the sparse loadings have similar 
structure to that of the dense loadings.   
 
Results and Discussion 
In this paper we studied semidefinite programming as a theoretical framework for applications in 
chemometrics. Two examples were given: quadratic classification and sparse principal components. 
Quadratic classification can be modelled and solved efficiently using SDP software. Sparse PCA results in a 
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SDP problem that can be solved efficiently up to medium sized instances. For large scale examples, we turn 
to the recent GPower method that solves an optimisation problem closely related to the SDP-relaxation. The 
method is fast and reliable on a large-scale data set from hyperspectral imaging. The technique is efficient 
from a data reduction and interpretability perspective. Calibration and regression have not been investigated 
further in this study. All computations very carried out in MATLAB v. 2.10; 7.5.0 2007b (The MathWorks, 
Massachusetts, USA). The SDPs where solved by the CVX toolbox (cvxr.com/cvx) and sparse principal 
components were obtained by the GPower method (www.montefiore.ulg.ac.be/~journee).  
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Figure 6. Scree plot: variance and cumulative variance for components 1-3 (sparse PC with red lines, full PCA with blue 
lines). Scores on PC1: Sparse PC in red and dense PC in blue. Score plots for sparse PC 1-3. Loading plots for dense 
PC (left) and sparse PC (right). Variables 0-210 correspond to wavelengths 1180-2498 nm.  
 
Sparse principal components are an interesting and useful application. Sparse components may enhance 
interpretation and lead to significant data compression, especially in large scale hyperspectral imaging 
applications. Data reduction is important both from a speed and a storage point of view. It is possible to 
replicate the performance of full PCA classification by using only 50% of the wavelengths. The extraction of 
sparse principal components may also be used as a pre-processing step for principal component regression 
(PCR) or partial least squares (PLS) regression. 
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