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Introduction 
The extremely high correlation between variables that is an inherent feature of near infrared (NIR) 

spectroscopic data makes multivariate projection methods suitable as data analytical tools. Projection-based 

methods such as principal component analysis (PCA)
1
, partial least squares (PLS)

2
 regression and PLS-

discriminant analysis (PLS-DA)
3
 or soft independent modelling of class analogy (SIMCA)

4
 are therefore 

often used for data exploration, regression and classification respectively. 

In classical statistics, the canonical variates analysis (CVA) method was introduced in the 1930s by 

Fisher
5-6

 in order to optimise the group discriminative direction in multivariate space. CVA is an excellent 

method for estimating discriminative directions, but in contrast to e.g. PCA, the CVA method breaks down if 

the number of variables is larger than the number of samples and/or if the variables are highly correlated. In 

this respect, CVA is comparable to multiple linear regression (MLR), which suffers the same limitations. 

A modification of CVA called extended canonical variates analysis (ECVA)
7 
 was recently developed that 

handles highly correlated data and here we will demonstrate the efficiency of the method,. 

Interval PLS (iPLS)
8
 has proven to be an efficient tool for exploration of all sorts of spectroscopic data 

including NIR. The power of iPLS is the graphical output clearly illustrating to the spectroscopist where 

interesting spectroscopic areas exists for the problem in question. ECVA is introduced in the interval version 

(iECVA) as an exploratory tool for spectroscopic interpretation and model optimisation, and it is our hope 

that it will be as beneficial as the iPLS method. With respect to iPLS, it should be stressed that it was 

originally intended as an exploratory tool for spectroscopic or other highly co-linear data structures. It was 

not intended as a stand-alone variable selection technique since such selection can be performed in a more 

elegant and optimal way by a multitude of other methods. The same comment holds for the iECVA method. 

The ECVA and iECVA methods are applied on a data set compiled in a large study to evaluate vis-NIR 

spectroscopy for the assessment of the depth of CO2 stunning of slaughter pigs. Several parameters such as 

corneal reflex, breathing and convulsions were analysed to assess the depth of the stunning but in this study 

we will solely focus on a multivariate analysis of the vis-NIR spectra to investigate if there are systematic 

discriminative patterns among the three slaughterhouses included. 

 

Materials and Methods 
Samples and NIR instrumentation 
The data set analysed consisted of 162 blood samples from pigs from three commercial slaughterhouses, 

designated S1, S2 and S3, with known differences in stunning time and concentration of CO2 stunning gas. 

During exsanguinations 1-2 L of blood from each animal was collected in a container. A 0.5 L wash 

bottle, containing 5 mL 10% EDTA and 10% anticoagulant, was immediately filled with the blood. 

The samples were analysed in the wavelength range 400 to 2498 nm (every 2 nm corresponding to 1050 

variables) by a reflectance measurement in a 3 mm cuvette on NIRSystems 6500 spectrophotometer (FOSS 

NIRSystems, Inc., Silver Spring, Maryland, USA fitted with a transport module (NR-6511)) filled with the 

blood sample. An average of 32 scans was used for each sample. The measurements were carried out over 

three consecutive days with the same instrument and operator. 

Slaughterhouse 3 (S3) used the longest stunning time and the highest CO2 concentration while stunning 

time was shortest and CO2 concentration lowest at S1. 

 

Chemometric methods 
The ECVA method is presented in detail in Nørgaard et al.

6
 while iECVA was introduced in a cancer 

diagnostics feasibility study based on fluorescence spectroscopy
9
; the reader is referred to these papers for an 

in-depth description. 
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The ECVA and iECVA methods are implemented in MATLAB (The MathWorks, Inc., Massachusetts, 

USA) and made freely available for non-commercial use at www.models.life.ku.dk. The present toolbox 

carries the version number 2.5. 

 

Data pre-processing 
The data were analysed using a) only mean centering

10
 and b) 2

nd
 derivative pre-treated data followed by 

mean-centering. The 2
nd

 derivative was calculated according to a Savitzky-Golay algorithm
11

 with an eleven 

point window width using a 2
nd

 order polynomial. 

 

Model validation 
Four samples (one from S2 and three from S3) were excluded from further analysis due to clearly deviating 

outlying spectral features. 

A calibration set consisting of 118 samples (selected by excluding every 4
th
 sample) and a model 

independent test set consisting of 40 samples (every 4
th
 sample of the original 158 samples without outliers) 

were constructed. For the calibration set, ten segment Venetian blinds cross-validation
12

 was used for 

estimating the number of inner PLS components in the ECVA method. This number was used when 

predicting the test set samples class affiliation. 

The calibration set contained thirty-nine S1, forty-two S2 and thirty-seven S3 samples while the test set 

contained fourteen S1, fourteen S2 and twelve S3 samples. 

 

Results and Discussion 
The mean-centred spectroscopic data for all 158 samples are shown in Figure 1. Spectral peaks are observed 

at 440 and 550 nm in the visual part of the spectra; these peaks are caused by the oxygenated form of 

haemoglobin
13

 while the peak at 760 nm is related to deoxygenated haemoglobin
14-15

. The O-H stretching 

and bending from water causes the broad peaks at 970 nm (O-H stretch, second overtone), 1190 nm (O-H 

stretch and bend, combination tone), 1450 nm (O H stretch, first overtone) and 1940 nm (O-H stretch and 

bend, combination tone). 

A PCA was calculated on the mean-centered data set and the score plot of principal component 1 versus 

principal component 2 (Figure 2) illustrates that S3 is more distinct compared to S1 and S2 that are quite 

overlapped. The two first components explain 37.8% and 34.0% of the variance respectively; relevant 

information was available also from higher principal components but no other combination showed a larger 

degree of discrimination between groups than the first two components. 

 

  
Figure 1. Mean-centred vis-NIR spectra (400 to 2500 

nm) of 158 blood samples from slaughterhouses S1 
(blue), S2 (green) and S3 (red). 

Figure 2. Principal component analysis score plot based 

on the mean-centred data presented in Figure 1. 
Slaughterhouse S1 (blue), S2 (green) and S3 (red). 

 

The next step was to focus directly on discrimination between the groups by calculating an ECVA model 

based on the full spectrum mean-centered data. The model has a minimum number of misclassifications 

using nineteen PLS components with two cross-validated classification errors. Application of the developed 

model on the independent test set consisting of 40 samples, resulted in two misclassifications. 

Figure 3 illustrates the extended canonical variates plot for component 1 versus 2. A very clear separation 

between the three slaughterhouses is observed compared to the PCA scope plot (Figure 2). ECVA focuses on 

the discriminative direction in multivariate space and the extended canonical weights (corresponding to 
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loadings in PCA) provide information on spectral ranges relevant for discrimination. As seen in Figure 4, the 

range from 650 to 1400 nm contains systematic variation in both canonical weights while the low and the 

high wavelength ranges are noisy. Utilising the properties of the ECVA there is no need for compression or 

variable selection of the spectral data before the analysis since the ECVA is capable of handling highly 

collinear data. This capability does not guarantee a good model, but the mathematics will not break down. 

 

  
Figure 3. Extended canonical variate number 1 versus 

number 2. Slaughterhouse S1 (blue), S2 (green) and S3 
(red). 

Figure 4. Extended canonical weights number 1 (blue) 

and 2 (green). 

 

In order to explore approximately which spectral ranges contain discriminative information, an iECVA is 

calculated on the mean-centered data with 20 spectral intervals. The number 20 could easily be changed 

according to the problem analysed but it seems a reasonable number in the present study taking into account 

the variation in the data and the spectral range. 

The number of misclassifications is given for each interval by the height of the bars (Figure 5). No single 

interval outperforms utilising the full spectrum for classification but is it clear that intervals 2, 9 and 11, 

corresponding to wavelength ranges 506-610 nm, 1248-1352 nm and 1460-1562 nm, are relevant for 

discriminating between the three slaughterhouses. 

Suitable data pre-processing can improve performance in both regression and classification problems 

based on NIR spectroscopy. In this case, the 2
nd

 derivative is used as a pre-treatment method and an iECVA 

is calculated on the pre-processed data (Figure 6). The full spectrum classification error is very high (33), 

due to the noisy ranges at low and high wavelengths. Two intervals provide a classifier with zero 

misclassifications: intervals 4 and 5 corresponding to 718-822 nm and 824-928 nm respectively. 
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Figure 5. Interval ECVA with 20 intervals on the mean 

centred spectroscopic data. The spectrum is the average 
over all 118 calibration samples. Numbers on the bars 
are the number of inner components in the ECVA model. 

Figure 6. Interval ECVA with 20 intervals on the mean 

centred and 2
nd

 derivative pre-treated spectroscopic data. 
The spectrum is the average over all 118 calibration 
samples. 
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The 2
nd

 derivative pre-treatment improved the misclassification error of the calibration set and caused a 

different spectral range to emerge as the most powerful range for discrimination. The test set 

misclassification errors based on the two individual models were 0 and 1 respectively (Table 1). 

 
Table 1. Misclassifications for selected ECVA models. All models are mean-centered. 

 Sample set 

Calibration Test 

Number of samples 118 40 
 
Full spectrum  

 
2 

 
2 

 
Full spectrum 
2

nd
 derivative 

 
33 

 
12 

 
718-822 nm 
2

nd
 derivative 

 
0 

 
0 

 
824-928 nm 
2

nd
 derivative 

 
0 

 
1 

 

Conclusion 
Extended Canonical Variates Analysis and the interval version of the same method are shown to be relevant 

and robust alternatives for solving NIR spectroscopy classification problems based on complex food, feed or 

pharmaceutical sample matrices. The methods are useful also for exploration, interpretation and 

identification of specific discriminative ranges in NIR spectra. 

In this study, the focus was on indicating the efficiency of ECVA and iECVA to help improve 

classification and interpretation; a more thorough study focusing on the chemical interpretation is under 

preparation. 

iECVA is not suggested as an optimal method variable selection but merely an exploratory tool to be used 

e.g. in combination with iPCA and iPLS for investigating the problem under study. The true essence of the 

word chemometrics lies in the synergistic combination of application knowledge combined with data 

analytical skills. 
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