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Introduction

Soybean (Glycine max Merrill 1917) is often called the “miracle” crop, and is one of the world’s leading
providers of protein and oil. Soybean mosaic disease, caused by soybean mosaic virus (SMV), is considered
one of the most important soybean diseases in many areas of the world.! SMV adversely affects both seed oil
content and root nodulation, and reduces soybean yield by up to 50-100% in outbreaks.? Use of genetically-
resistant cultivars is the most effective strategy for managing SMV but most of the commercially grown
cultivars are susceptible.> A simple, rapid and non-destructive method for identifying SMV infected and
stress-tolerant plants would be useful for soybean breeding and cultivation. Although several molecular
biological methods, including enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction
(PCR), and western blotting have been used for the diagnosis of viral infections, they demand specialised
sample harvesting and preparations that involve extraction, maintenance in buffer solutions, centrifugation and
purification for each assay.* Thus, none of them is ideal in terms of cost-effectiveness, speed, and accuracy.’

Use of the electromagnetic spectrum for detecting plant disease was possibly first reported by Bawden in
1933 by observing that a near infrared (NIR) film captures some virus symptoms before they appear to the
human eye.® However, since then, most of the applications of this technology seems to have concentrated on
long distance plant observation done by remote sensing.”® In such long distance monitoring a variety of
environmental interferences can negatively impact the detection performances. Thus, an emphasis on close-
contact spectroscopic monitoring of plant leaves for finer scale information has emerged.

NIR spectroscopy has recently been used to distinguish transgenic and non-transgenic leaves and to
discriminate tomato plant varieties.>'® The accuracy of detection is higher due to the direct contact of
detectors with samples. Moreover, such methods are highly attractive to users because of the non-invasive
and rapid nature of detection.

The objective of this investigation was to assess the use of a handheld NIR spectrometer for identifying
SMV infected plants before the disease developed visual symptoms and for identifying stress tolerant plants.

Materials and Methods

Samples

Twenty soybean plants (well grown seedlings; Japanese Hyuga variety) were placed in different locations
inside a growth chamber and maintained at 28°C. Ten plants were randomly selected and inoculated with
SMV strain B eight days after seed germination as previously described by Walkey." A standard double
door entry procedure was followed to prevent cross-infections by insects,. Spectra from all healthy plants
were taken prior to the infected plants to avoid virus transmission through probes. After completing the scan
of all infected plants, the adjacent box was removed from the spectrometer and washed with 70% ethanol,
then washed with running water and soap, and left to dry. Leaf samples from all plants were assayed for
SMV infection two times by ELISA, as previously described by Edwards and Cooper (1985), once on the
first day and again on the last day of the experiment: all inoculated plants were positive for SMV and all
control plants were negative over the total period of spectral acquisition.*?

A subsequent experiment considered five soybean cultivars with different cold stress tolerances:
Kitamusume (A), Toyoharuka (B), Toyocomachi (C), Toyomusume (D), Hokkaihadaka (E). Twenty plants
per group were grown in phytothron at 27°C for 2 weeks. Plants were then moved to a 22°C phytothron for in
situ cold stress perturbation for one week.

An FQA-NIR Gun NIR spectrometer (Shizuoka Shibuya Seiki, Hamamatsu, Japan) was used to acquire
daily transflectance spectra of SMV-inoculated and healthy plants, and to collect spectra from cold-stressed
plants after one week at 22°C (588-1025 nm at 2 nm steps). Spectra were collected from five leaves of each
studied plant. A soft independent modeling of class analogy (SIMCA) prediction model was constructed
(Pirouette 3.11 Infometrix, Inc, WA, USA) and optimised by mean centered 2™ derivative spectra. The models
were validated by an independent validation set.
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Instrument and spectra acquisition

An NIR spectrometer FQA-NIR Gun (Shizuoka Shibuya Seiki, Hamamatsu, Japan) was used to acquire the
reflectance spectra from 730 nm up to 1025 nm at 2 nm steps. Studying the water-specific spectral response
at the latent stage of the disease required the elimination of background noise. The rigid steel probe in the
original instrument was not suitable for leaf spectra measurements and did not prevent interference from
environmental light. Instead, support was added in the form of a small (0.06 m®) rubber block with a central
inner cylindrical path (0.025 m diameter) for light transmission. To keep a constant background below the
lower surface of the leaves, a movable hinge-type bottom plate with a white polypropylene sheet was
attached. The modified probe provided constant measuring conditions for all leaves (Figure 1). The acquired
reflectance spectra (R) were converted to Log 1/R and the corresponding leaf absorbance spectra were
obtained.
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Figure 1. NIR spectrometer with modified probe for measuring leaf spectra.

Ten leaf spectra were taken per plant, from 10 fully grown leaves every other day within a 24 days period
accumulating 2400 spectra from the 20 plants. The spectra taken from 14 plants (7 from each group: 10
spectra X 14 plants x 12 times = 1680 spectra) were used in the model set. The rest of the spectra from 6
plants (3 plants from each group: 10 spectra x 6 plants x 12 times = 720 spectra) were used in the prediction
set for the model evaluation process.

Data analysis

Spectral data were studied by principal component analysis (PCA) to identify outliers according to the
Mahalanobis distance.*® 1652 spectra remained in the dataset, equally distributed between the two classes of
infected and non-infected plants (826 each). Similarly, 708 spectra were in the prediction sets, with 354 spectra
representing each class group. Predictions of plant health were made with SIMCA, in which healthy and
infected plants were assigned as discriminant class 1 and 2 respectively. SIMCA models were optimised for
different model specifications including number of factors, data pre-treatments and mathematical
transformations. The prediction results of all combinations were used to calculate disease diagnosis sensitivity
and specificity to define the accuracy of diagnosis using the following equations:

Number of HEALTHY plants identifiedby NIRS
Number of HEALTHY plants identifiedby ELIZA
Number of INFECTED plants identifiedby NIRS
Number of INFECTED plants identifiedby ELIZA

Disease diagnosis specificity =

Disease diagnosis sensitivity =

Results and Discussion

Raw spectra of infected and healthy plants

NIR spectra of infected plants showed higher absorbances when compared with spectra of healthy plants (Fig.
4). Plants in abnormal conditions, such as with nutrient deficiency, have been reported to absorb less light and
maintain less photosynthetic activity."* However, similar to our findings, bacteria-infected cabbage and virus-
infected Nicotiyana spp., were reported to increase their light absorbance, probably due to leaf moisture
variations in damaged plant cells.”>*® Hence, increased water content increased light absorption. In our study,
both infected and non-infected plants showed their highest light absorbance around 680 nm (Fig. 2) which

Reference paper as:

R. Tsenkova and B. Jinendrai (2012). Aquaphotomics: anovel diagnostic tool for biotic and abiotic stress of soybean reveas
the importance of water, in: Proceedings of the 15th International Conference on Near Infrared Spectroscopy,

Edited by M. Manley, C.M. McGoverin, D.B. Thomas and G. Downey, Cape Town, South Africa, pp. 181-185.



corresponds to chlorophyll. However, studies have shown that this spectral region provides unreliable
information as it gives similar responses for different conditions, such as herbicide, heat stress, nitrogen and
potassium deficiencies.”*® As such, we focused on the short wave NIR (SWNIR; 730 nm-1025 nm) region to

seek information specific to SMV.

Absorbance
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Figure 2. Spread of raw spectra and average category of healthy and infected plant leaves.

The prediction performance of SIMCA
The first models of SIMCA based on different pre-treatments indicated that mean centering produced the most
accurate models. Thus, further data analyses were done with mean centered spectral transformation data. Table
1 shows the necessity of 1% and 2" derivatives and the baseline correction when compared to the other options.
Using a mean centering and 2" derivative mathematical transformation, 303 healthy plant spectra of a total
number of 354 were correctly identified (85.6% accuracy for disease specificity; Table 1). 299 infected plants
were correctly identified (84.4% accuracy for disease sensitivity; Table 1). These results are consistent with
several other studies in which canopy structural and background effects in plant leaf spectra were overcome
using second derivative transformation.*®*°

Table 1. Results of different mathematical treatments for primary spectra models.

Math Total Correct Error No
treatment Category spectra  classifications classification match Specificity  Sensitivity
1st Healthy 354 304 49 1 85.5
derivative .
Diseased 354 298 47 9 84.1
2nd Healthy 354 303 51 0 85.6
derivative .
Diseased 354 299 47 8 84.4
Baseline Healthy 354 286 67 1 80.8
correct .
Diseased 354 282 62 10 79.7
Smoothing Healthy 354 297 57 0 83.8
(point5) .
Diseased 354 261 80 13 73.7
Normalize Healthy 354 305 48 0 86.1
Diseased 354 275 70 9 77.6
MSC Healthy 354 297 57 0 83.8
Diseased 354 270 66 18 76.2
Non Healthy 354 297 57 0 83.8
Diseased 354 277 61 16 78.2
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Figure 3. Unaveraged (3a) and averaged (3b) spectra in 3D principal component space.

Using average spectra in the models increased the prediction of disease sensitivity by 8.53% (from 84.4% to
91.6%) and disease specificity by 11.91% (85.6% to 95.8%; Table 2). Moreover, we did not have any
classification error in the average spectra models, although there were several “no match” classifications.
The suspected reason is in the limited number of samples available in the multi-dimensional principal
component space after averaging, as shown in the score plot diagrams (Fig. 3). Such shortage of spectra
could be easily overcome by increasing the number of data samples. These results show the benefit of taking
many samples of spectra from leaves of a single plant and calculating an average to use in models.

The positive results from in vivo diagnosis of SMV indicated the possibility of studying cultivar genetic
potential.2° Here, leaf spectra were acquired before imposing cold stress (i.e. continuously grown at 27 °C)
and after imposing cold stress (fixed low temperature stress at 22 °C) to identify cold tolerant cultivars.

0.50 4
) * A
0454 5Bl
{ =
0.40! .
4 l\ >< D
035 ° S E|
o 0.30- 4
Q
§ 0.25 | 1
o 7
A ]
0.20 RS 4
0.154 SRRSO ke 1yy
0.10 AR O
0.05 %6; %ﬁgo ?_
T T T T == e -
0.0 0.1 0.2 0.3 0.4

Distance

Figure 4. Potential of cold tolerance prediction based on Coomans plot configurations.

Cultivars were well-predicted (> 92%) while configuring their order of cold tolerance in the model. It was
found that lowering temperature by only 5°C activated cold protection mechanisms in the plants and
provided enough spectral information at NIR water specific bands for successful discrimination of cultivar
cold tolerance. Moreover, an excellent arrangement of soybean cultivars in their order of cold tolerance was
observed in the Coomans plot space after cold stress perturbation; this can be used as decision making
diagram to identify the relative level of cold tolerance in any new variety of interest.
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Conclusions

Near infrared spectroscopy with a specific focus on water bands (i.e. aquaphotomics) was applied as a rapid,
non-invasive and reagent-free method for understanding biotic and abiotic stress of soybean (Glycine max
Merrill 1917). Infection and cold tolerance in soybean cultivars were successfully identified. These results
proved that plant reactions towards biotic and abiotic stress regarded as polygenic and multi-factorial
syndromes are strongly correlated with plant water activity dynamics.
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