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The rapid detection of food-borne pathogenic bacteria is critical to the food industry for preventing the introduction of contaminated 
product into the marketplace and limiting the spread of outbreaks. Hyperspectral microscope images (HMI) are a form of optical detec-
tion, which classify bacteria by combining microscope images with a spectrophotometer. The objective of this study was to compare the 
spectra generated from dark-field HMIs of five live Salmonella serotypes from two lighting sources, metal halide (MH) and tungsten 
halogen (TH), assessing classification accuracy and robustness, between 450 nm and 800 nm. It was found that the MH spectra could 
be reduced to as few as 10 optimal bands between 594 nm and 630 nm, but TH band reduction decreased accuracy, due to the inherent 
broader peak structure generated by the TH light source. Collection of HMIs from the two light sources comparing the same cells shows 
slight differences in scatter intensity patterns. Principal component linear discriminate analysis classified serotype subsets (n = 1800), 
reporting both MH and TH accuracies at 100%, while the reduced key MH bands achieved 99.4–100% accuracy. Principal component 
regression calculated the root mean squared error of cross-validation < 0.014 and a R2 > 0.948 for both full spectrum lamps. MH or TH 
lamps can be effectively used for discriminating bacteria HMIs on a cellular level by serotype, but reducing TH bands may lose crucial 
classification information.
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Introduction
Food-borne disease is responsible for approximately 48 million 
illnesses and 3000 deaths per year, with Salmonella being 
the most common non-viral pathogen causing domestically 
acquired illness.1 Salmonella is a food-borne pathogen that 
has caused outbreaks in poultry, meat, produce, nuts and dairy 
products.2 The gram negative bacteria attaches to the diges-
tive tract in humans causing gastroenteritis. In rare cases, this 

can lead to septicaemia, typhoid fever or death. Salmonella 
enterica and Salmonella bongori are the two known species of 
Salmonella. The Salmonella bongori species is most commonly 
found in reptiles, and not a major concern for humans. However, 
the Salmonella enterica species causes illness in mammals and 
consists of six sub-species, as well as numerous serotypes. 
Here, we focus on serotypes commonly found in human salmo-
nellosis outbreaks, from Salmonella enterica subsp. enterica.

Since accurate identification of pathogenic contaminates 
in an outbreak investigation is critical for preventing further 
threats to human health, there is a need for early and rapid 
detection of pathogens. Traditional plating techniques may take 
7–10 d or more for confirmation.3 Polymerase-chain reaction 
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(PCR) requires much less time, but can be expensive due to 
the high reoccurring cost associated with cell lysing reagents 
necessary for DNA purification and amplification.4 The reduc-
tion in time required for identification can result in a larger 
impact on human health, leading to faster outbreak responses, 
clinical infection identification or detecting contaminated food 
product before it leaves the production chain.

Optical detection has the potential to non-destructively 
assess a food product for the presence of microbial life.5–7 
Optical detection works to identify bacteria based on a spectral 
profile that is inherently unique to the organism. Hyperspectral 
imaging (HSI) is a form of optical detection that differs from 
other methods by collecting both spatial data (x and y coordi-
nates) and spectral data (l) in the form of a three-dimensional 
hypercube. The hypercube combines images collected with 
a spectrophotometer across a range of the electromagnetic 
spectrum. These images are stacked on top of one another 
creating a cube. Here, the images maintain constant x and 
y coordinates, while the spectral information changes with 
each wavelength imaged. Hyperspectral microscope images 
(HMIs) are generated from live bacterial suspensions mounted 
on a simple microscopic glass slide. Previously, HMIs have 
been used to differentiate species8–10 and serogroups or sero-
types11,12 of food-borne bacteria, as well as to investigate the 
potential for early and rapid detection. Dark-field microscopy 
was used to illuminate the cells against a black background 
creating a contrast of intensity values. The signals produced 
are light backscatter, where some light is being absorbed and 
some light is scattered. The contrast of scattered light allows 
pixels representing cells to be extracted from the dark-field 
background. In most of the previous studies a metal halide 
(MH) was used as the lighting source. Similar to MH, tungsten 
halogen (TH) lighting sources offer an affordable illumination 
option for microscopy. Anderson et al.8 used a 3200°K TH lamp 
to differentiate between live/viable and dead/non-viable bacte-
rial endospores. The light scattering spectra generated from 
cells were able to discriminate between live and dead endo-
spore cells only when the outer membranes had been damaged 
by hydrogen peroxide (H2O2). Currently, few studies using HMI 
exist, and it is unclear how differences in lighting sources such 
as a MH or TH lighting differ. In order to move towards an early 
and rapid detection method using HMI as a tool in food-borne 
disease outbreak investigation or in biomedical detection of 
blood-borne pathogens, a detailed comparison of light sources 
for the system is needed. Here, the objective was to compare 
HMIs of the same Salmonella cultures generated by MH and 
TH lamps, assessing accuracy and robustness of classification 
algorithms for rapid detection of five Salmonella enterica subsp. 
enterica serotypes, to determine an optimal lighting source.

Materials and methods
Bacterial samples
The five Salmonella serotypes used in this study were: Salmonella 
Enteritidis (SE), Salmonella Heidelberg (SH), Salmonella 

Infantis (SI), Salmonella Kentucky (SK) and Salmonella 
Typhimurium (ST). These cultures were obtained from chicken 
rinsates, and collected from the Poultry Microbiological Safety 
and Processing Research Unit at the US National Poultry 
Research Center located in Athens, GA. Isolates were stored 
at –80°C until needed. Samples were inoculated into tryptic 
soy agar slants for short-term storage and held at 4°C. Fresh 
cultures of the five Salmonella serotypes were prepared by 
inoculating a few colonies from the agar slants into 10 mL 
of tryptic soy broth (TSB). TSB samples were incubated at 
37 ± 2°C for 18–24 h. TSB cultures were then serially diluted in 
peptone buffer up to 10–5, followed by pipetting 100 µL of 10–5 
dilution onto brilliant green sulfa (BGS) agar plates, a selec-
tive Salmonella media, for a final dilution factor of 10–6. Plates 
were then incubated at 37 ± 2°C for 18–24 h. Following incuba-
tion, microscope sample slides were prepared, similar to the 
protocol described in Park et al.9 Briefly, one colony from each 
plate was placed in 100 µL of molecularly sterile water and 
briefly vortexed. 3 µL of the bacterial suspension was spread 
onto the centre of a glass slide, and allowed to air dry in a 
biosafety cabinet (Baker, BSC, Sanford, ME, USA) for 15 min. 
After drying, 0.8 µL of sterile water was added on top of the 
dried suspension to secure a glass cover slip for oil immersion. 
Cells were immobilised by firmly pressing the cover slip to the 
slide. A drop of immersion oil was added to the top of the cover 
slip. The total time for slide preparation and image collection 
was approximately 20 min. This process was repeated for a 
total of three repetitions, a calibration, validation and test data 
set, for each lighting source and all five serotypes. The three 
data sets were collected over the span of one year, with new 
cultures grown for each repetition to assess repeatability in the 
analytical methods.

HMI system and lighting sources
The HMI system can be seen in Figure 1. It consists of an 
upright microscope (Eclipse e80i, Nikon, Lewisville, TX), 
mounted with an acousto-optical tunable filter (AOTF) (HSI-
400, Goouch & Housego, Ilminster, UK), a high-performance 
cooled electron multiplying charge coupled device (EMCCD) 
16-bit camera (iXon, Andor Technology, Belfast, UK) mounted 
on top of the AOTF and dark-field illuminating light sources—
MH and TH lamps offset from the stage in lamp housing 
boxes. The AOTF filter has the capability for a high-speed, 
high-throughput, random-access solid-state optical filter 
with an adjustable optical pass-band and exceptionally high 
rejected light levels.9 The AOTF delivers diffraction-limited 
image quality with variable bandwidth resolution within 2 nm. 
Both MH and TH images were collected at a gain setting of 
3.5%, exposure time of 250 ms and with a 100× oil immersion 
objective (Olympus, Tokyo, Japan).

A 24 W MH lighting source with MR-11 reflector (Ushio 
America, Cypress, CA, USA) was selected as the MH illumi-
nating source. The lighting source has a colour temperature 
of 5600°K, and operates between 0.3 A and 0.4 A. The lamp 
is ignited by a voltage pulse that ionises the argon gas. Once 
the lamp has reached operating temperature, vaporised MH 
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salts are dissociated by the arc and excited into higher energy 
states, emitting spectral lines.13

The TH lighting source used here is a 21 V, 150 W lamp 
(Osram, Munich, Germany) with MR-16 reflector and filled 
with an inert gas and trace amounts of halogen. This lamp 
uses a regenerative halogen cycle, as the lamp is heated to 
an operating temperature of 3300°K. With this process, tung-
sten atoms are evaporated on the filament and then react 
with the gaseous halogen vapour, along with trace amounts 
of oxygen to form tungsten oxyhalide.14 The benefit of regen-
erative halogen is that it allows for a smaller glass envelope, 
resulting in a more economical use of quartz and glass alloys, 
with approximately 200 h of life expectancy.15 Both lighting 
sources were housed in enclosed boxes and kept next to the 
microscope setup, instead of underneath the slide stage. A 
fibre-optic cable ran from the lighting houses to the base of 
the microscope, emitting light upward through the sample 
and into the AOTF. This was done to avoid bacterial cell injury 
or death as a result of the heat generated from the lamps with 
dark-field illumination, because the practical aspect of this 
detection methodology is that live cells can be identified.9

Data mining and image processing
HMI collects a large amount of data in the form of a three-
dimensional hypercube. The x- and y-dimensions represent 

spatial coordinates of the cells that stay constant over the 
collection of the hypercube images, while the z-dimension 
represents the light scattering intensity measured at each 
observed wavelength in the spectrum (89 total). The high signal-
to-noise ratio (SNR) allows for information from only the cells 
to be extracted from the image, using the environment for visu-
alising images (ENVI) software (Exelis, McLean, VA, USA) with 
a pixel scattering intensity threshold extraction method. Here, 
we specify the pixel intensity minimum and maximum based 
on intensity value histograms, and extract only those pixels, 
discarding the background spectra or non-cellular informa-
tion, as well as any under- or over-saturated pixels that may be 
present. Intensity thresholds are used because refractive index 
gradients occur at the cell walls, and it is difficult to manually 
select pixels from within the boundaries of the cells, as well 
as quickly automating the selection process. These extracted 
pixels form a region of interest (ROI). One ROI with pertinent 
information was extracted from each image. The average cell 
was found to have approximately 500 pixels, with 3-D recon-
struction of hypercube images performed in OriginPro 9.0 
(Origin Lab, Northampton, MA, USA). Pixels within the ROIs 
were randomised to ensure that multiple subsets are not 
extracted from the same cell and refractive index gradients are 
not causing bias of data for model development. Subsets of 500 
pixels were averaged to create mean spectra with the approxi-
mate number of pixels found in a typical cell, followed by max 
peak normalisation, where each collected wavelength in the 
spectrum was divided by the maximum intensity peak value 
and plotted in SigmaPlot 11 (SigmaPlot, Systat Software, San 
Jose, CA, USA). Metal halide samples have a strong excitation 
peak at 546 nm, thus all samples were normalised to 546 nm, 
whereas the TH samples display more gradual peaks, with 
638 nm representing the maximum wavelength intensity for 
TH sample normalisation. Sixty averaged subsets from each 
image were collected, creating n = 300 per light source (2) and 
repetitions (3), with two lighting sources and three repetitions 
resulting in a total n = 1800 for the experiment.

Multivariate data analysis
Principal component analysis
Data subsets were imported into the Unscrambler v. 10.3 
software (Oslo, Norway) for multivariate data analysis. Here, 
a covariance-based principal component analysis (PCA) was 
conducted. PCA methods have been well documented as a 
method for reducing the high dimensionality of data sets, such 
as spectroscopy data.16–18 In general, PCA is an orthogonal 
transformation that converts, in this situation, highly collinear 
variables into uncorrelated variables, while reducing the 
dimensionality with principal components (PCs), and can be 
calculated by:

 X = TPT + E (1)

where X is the data matrix, T represents the score matrix, P 
represents the loading vectors and E is the error matrix, or F 
statistic plotted against Hotellings T2. Further detail can be 
found in Wold et al.19

Figure 1. The hyperspectral microscope imaging system. 
EMCCD = electron multiplying charge coupled device, AOTF = 
acousto-optical tunable filter, MH = metal halide, TH = tungsten 
halogen.
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Principal component-linear discriminate analysis
Principal component analysis is a quick method to visu-
ally inspect inherent differences for a data set with multiple 
classes, but is not specifically a classification algorithm. A prin-
cipal component-linear discriminate analysis (PC-LDA) was 
performed on the data sets to quantify classification accuracy of 
the five serotypes for both of the full 89 bands approaches and 
the optimal bands selected from the MH light source. Linear 
discriminate analysis is a supervised classification method, with 
a priori knowledge of class membership. Here, the HMI hyper-
cubes have a greater number of variables (89) than number of 
samples per image (60), and this would result in LDA breaking 
down mathematically.20,21 To counter this problem, LDA was 
combined with a PCA to form a PC-LDA and to conform to the 
overall PC space analysis. Equal prior probability was assumed 
and sample classification results were reported in a confusion 
matrix, displaying the number of true positives and false posi-
tives in a table. PC-LDA was calculated with PCs 1–7 (explaining 
99.4% of variance) and then:

 y = vTX (2)

where vT a projection vector that multiplies between-class and 
within-class covariance matrices, X represents dimensional 
data or PCs 1–7 in this case, finding y. This reduces the dimen-
sionality of the data matrix by using only the first few PCs, and 
applies Euclidean distances to determine the class-discrimi-
nation between the five serotypes. The Euclidean distance can 
be calculated by:
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where d is the calculated Euclidean distance, xA and xB repre-
sent two PC vectors, and j represents objects.

Principal component regression
To measure repeatability, a PC-based regression was calcu-
lated for assessing similarities in both the validation and test 
data sets, based on the PCA results from the calibration set. 
Here, the calibration PCs (first repetition) are the predictors, 
while the validation and test set (second and third repetitions) 
spectra are responses, predicting how well the first repetition’s 
PCs are in agreement with validation and test sets. Principal 
component regression (PCReg) has the potential to overcome 
collinearity in samples, such as the case with spectroscopic 
data. This method reduces the number of regression variables. 
PCR is a two-step process, with the PCs being calculated first, 
as stated above in Equation (1). Then, the T matrix is inserted 
into a multiple linear regression model, with T being the PCA 
scores matrix, the regression coefficient q = the transpose of 
the PCA’s loading matrix and e is the error matrix.

 y = Tq + e (5)

Model performances of the PCReg were evaluated by calcu-
lating the root mean squared error of calibration (RMSEC) and 
cross-validation (RMSECV), as well as the coefficients of deter-
mination R2

C and R2
CV, for the calibration and cross-validation, 

respectively. These model indices were calculated by:
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where ŷi and yi are the predicted and measured values from 
the calibration data, ŷj and yj are the predicted and measured 
values from the validation or test data, ymc and ymv represent 
the mean values in the calibration data set and validation (or 
test) data, with nc and nv being the number of samples found 
in the calibration and validation (or test) data. The delta R2 and 
RMSE were reported as an average of comparing the validation 
set to the calibration set, as well as the test set compared to 
the calibration set.

Results and discussion
Metal halide and tungsten halogen images 
and spectra
For the purpose of identifying bacteria at the cellular level, 
dark-field microscopy offers a high contrast method with 
large SNR by illuminating the unstained live cells onto a dark 
background from every azimuth, with only light scattered from 
the living cells collected by the microscope objective.22 Both 
lighting sources are represented by SH HMIs in Figure 2 with 
MH on the top row and TH on the bottom row. The left column 
shows converted hypercube images generated by the two 
lamps with no noticeable movement in cells generated during 
the time necessary to collect both images, approximately 45 s 
per lamp. From these converted images it is difficult to differ-
entiate between cellular scattering patterns as a result of 
the MH and TH lamp illuminations. In order to take a closer 
look at the scattering patterns of individual cells, 3D surface 
plots of cells were constructed, at the maximum peak wave-
lengths for MH (546 nm) and TH (638 nm). The average cell was 
found to have approximately 500 pixels when reconstructing 
images, and was representative of common short rod-shaped 
Salmonella cells which are 0.7–1.5 µm in diameter to 2–5 µm 
in length.23 Here, these cells were approximately 15–20 pixels 
wide by 25–30 pixels in length. An example of a common 
Salmonella cell is shown in the middle column of Figure 2. 
Here, we see that the same cell imaged with both MH and TH 
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is similar, but with some noticeable differences in terms of 
intracellular scattering intensity patterns. The SNR between 
cell membranes and the background result in different refrac-
tive indexes, creating a refractive index gradient.24 Park et 
al.10 noted that the inner and outer cell membranes could 
be observed through HMIs. The refractive index gradients 
generated by the two light sources appear slightly different 
for the boundaries between the outer cell membrane and the 
background. It is not clear if morphological differences in the 
inner and outer cell walls are causing the light to be reflected 
or refracted through HMI, but it is apparent that the optical 
profiles of the two lighting sources vary in terms of light scat-
tering with the inner and outer cell walls. The histograms 
located in the third column are for pixels contained within the 
cell, and not the background. Minimum pixel saturations were 
set at an intensity of 4000 for the histograms. Both histograms 
show a slight right-side tail, present with increasing pixel 
intensities. The TH histogram shows that there is a larger 
number of pixels in the lower and higher intensities, more 
so than the MH cell. This is in agreement with the 3D plots, 
suggesting that the TH image is generating a higher contrast 
in the inner and outer cell walls than MH.

Anderson et al.8 used a TH lamp, but measured reflectance, 
whereas here we are collecting scattering data. The previous 
study also collected data every 10 nm between 400 nm and 
720 nm, resulting in a 32-band hypercube. Another difference 
in the instrumental setup is that the previous study used a 
liquid crystal tuneable filter (LCTF), opposed to the AOTF used 
in this experiment. These differences in design make it diffi-
cult to compare results from this experiment to the previous 
study. It can be noted that through a similar approach, hyper-

cube acquisition followed by PCA, the Anderson et al.8 paper 
was able to identify organisms with a damaged outer cell 
wall, through the use of PCA scores and loadings plots. 
Verebes et al.25 investigated a procedure to image blood cells 
with HMI. Erythrocytes and pathogenic bacteria such as 
Salmonella are considerably different in physiology, but both 
have a cell wall consisting of a lipid bilayer. Because the 
shape of erythrocytes can be indicative of a number of patho-
logical diseases, the paper investigated the interaction of the 
MH photons and the cell’s shape through random geometric 
orientations and the use of a spectral angle mapper (SAM). 
It was determined that geometric orientation of the cell had 
little effect on the resulting spectral signature with SAM 
maximum angle measurements of 0.1 radians from several 
build-up libraries, and proposed that curvature of the cell 
wall was a larger influence on the spectra. In Figure 2 we 
can see that backscatter is occurring, with some light being 
absorbed by the cell and some scattered. Considering the 
previous studies, noting the hyperspectral significance of 
the lights’ interaction with the curvature or damages to the 
outer cell walls and the differences in the middle column 
of Figure 2 showing how MH and TH produce somewhat 
different spectral scattering patterns when interacting with 
the cell’s outer membrane, point to a need for comparing 
the two backscatter patterns and thus overall classification 
abilities, as TH and MH light photons interacted with cells at 
various lamp excitation levels.

Most of the wavelengths imaged in this experiment are in 
the visible light spectrum. In this range, vibration overtones 
and overlapping of spectral attributes are present at individual 
bands. Observing a 3D reconstructed surface plot from the 

Figure 2. S. Heidelberg column with the top row (MH) = metal halide and the bottom row = (TH). Left: converted average HMI, middle: 
the same cell reproduced in a 3D surface plot from the two light sources, right: histograms representing the pixels within the cells.
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same cell did not suggest any specifically noticeable band-
to-band differences in higher or lower backscatter intensities 
from one section of the cell to another, but consistent scat-
tering patterns with varying intensities were visible.

Figure 3 shows the average spectra for all subsets of the 
calibration data set by serotype and lighting source, with (a) 
being MH and (b) showing the mean TH scattering patterns. 
Validation and test set repetitions show nearly identical spec-
tral patterns across all serotypes. It is apparent that the 
spectra are similar and collinear for each lamp, possibly due 
to the close taxonomical relationships of the five samples, 
and their inherent similarities in morphological and biochem-
ical profiles. The MH has strong light scattering at excitation 
peaks at 546 nm and at 590 nm. The spectral profile of TH is 
similar to that generated by a blackbody radiator, with a more 
drawn-out profile, where the sharp peaks found in MH are 
absent. Max peak normalisation was performed on all the 
spectra to assess HMIs on the same scale, while retaining 
inherent differences of the samples. Salmonella Enteritidis 
shows the highest mean light scattering intensity for both 
lighting sources.

The hypercube offers a powerful tool to observe cell scat-
tering patterns at various wavelengths in the electromag-
netic spectrum. The loading vectors from two separate PCA 
analyses of the full MH and TH generated spectra are shown 
in Figure 4. The first and second PCs represent 96% of the 
explained variance in the PCAs for both the MH and TH data. 
Five informative wavelengths were identified from the first 
two PCs of each light source. These wavelength slices were 
extracted from the hypercubes and are displayed in Figure 5, 
with MH in the top row and TH in the bottom row. The intensi-
ties of each wavelength vary over the spectrum with the lowest 
SNR values noticeable at both the highest and lowest wave-
lengths shown. From Figure 5 it can be seen that scattering 
patterns remain consistent over the spectrum, as scatter 

intensity changes. The image shows that wavelengths repre-
senting MH peaks at 546nm, 590 nm and 598 nm and TH peaks 
at 606 nm and 650 nm have higher definition between the base 
of the cell and the background.

Multivariate data analysis
PCA
First, the PCA was performed on the MH samples. Data 
reduction is valuable in minimising the processing and 
storage space that would be necessary with food industry 
implementation. The loading vectors (P) shows how much 
overall variance is explained by the individual wavelengths. 
For the MH data set there is a high amount of variance 

Figure 3. Mean spectra for five Salmonella serotypes with maximum peak normalisation applied to (a) MH (546 nm), (b) TH (638 nm).

Figure 4. Loading vectors from two principal component analy-
ses, one for five Salmonella serotypes and the MH lamp, the 
other for the same five samples with TH lamp.
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explained around 600 nm. A strong negative correlation in 
the loadings and scores plots was noticed at the 590 nm 
band. The residuals (not shown) also showed increased vari-
ance, when the 590 nm band was included in the analysis, 
with a multitude of samples above the significant differ-
ence threshold for intensity scaling. Removing the band and 
analysing the optimal MH range of 594–630 nm resulted in 
increased classification accuracy, consistency with the load-
ings and a symmetric pattern in plotting residuals when 

compared to the 590–630 nm range. However, wavelength 
reduction strategies for the TH data set showed little to no 
success. Reducing the data set to what appeared to be the 
most informative wavelengths only, decreased the PCA’s 
serotype clustering, introducing considerably more variance 
to residuals and further reducing the overall accuracy of 
the proceeding classification algorithm. TH lacks the sharp 
excitation peaks of MH, therefore requiring the use of the full 
spectral profile.

Figure 5. Comparison of a S. Enteritidis cell observed with the MH lamp (top row) and the TH lamp (bottom row) at wavelengths deemed 
informative from the respective PCA loading vectors.

Figure 6. Principal components (PC) images for S. Enteritidis images, with the number of eigenvalues described by each PC in the 
plots, with the top row = MH, and the bottom row = TH. PCs 1–3 are shown in columns 1–3, with the corresponding scree plots in 
 column 4.
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Figure 6 shows the first, second and third PCs for a S. 
Enteritidis captured with both the MH and TH lighting sources 
as shown by the ENVI software. The images show the amount 
of pixels that are explained by each of the first three PCs as 
carried out on all collected wavelengths. From these images 
we can see that most of the cellular pixels are explained by 
PC 1, with some explained by PC 2 and fewer with PC 3, while 
the plots in the far-right column quantify the amount of eigen-
values explained by each PC. PCA score plots can be seen 
in Figure 7, with the full spectrum results of MH (Figure 7a), 
reduced wavelengths of MH (594–630 nm) (Figure 7b) and the 
full TH spectrum (Figure 7c). The figures show that with all 
three data sets and spectral ranges, classification of the five 
serotypes is possible, with little to no overlapping of clus-
ters present. PCA score plots are in agreement with ENVI 
images in Figure 6, showing that most of the meaningful data 
is explained by PCs 1 and 2.

PC-LDA classification
While PCA score plots display an easy to read visual represen-
tation of the data, another step is needed to quantify classifi-
cation accuracy. The PC-LDA did not breakdown mathemati-
cally because we reduced the number of variables using PCs 
1–7 of the PC. Table 1 shows the results in the form of the 
overall classification accuracy from both MH and TH lighting 
sources, and the optimal MH spectral range (594–630 nm), as 
well as the mean loading weights (%) from the three data sets. 

The table shows that all samples from both the full spectra 
of the two lighting sources have 100% classification accuracy. 
This is true for the classification, validation and test data sets, 
which were collected over the span of approximately one year, 
regrowing the strains with each repetition. The optimal MH 
range (594–630 nm) had nearly identical results, with two of 
the ST samples being classified as SH. Loading patterns had 
similar distribution results across the first three PCs, with 
9–14% more variance explained by the first PC in the optimal 
MH set, likely due to removing spectral noise, contrasting the 
sharp peaks present in the spectra.

PC-based regression analysis
Table 2 lists the results obtained from the PCReg using the 
calibration data set as the PCA, while regression was carried 
out on validation and test sets. The regression analysis shows 
that the RMSE is very similar for all three data sets, < 0.014. 
The R2

C and R2
CV values are similar for the full MH and TH 

spectra. However, there is a noticeable drop in values for the 
optimal MH set, of approximately 0.1 in R2 values. The simi-
larities in the PCReg results comparing both PCA responses 
from the validation and test sets to the PCA results of the 
calibration set indicate that these results were repeatable with 
strains grown at different times. This is in agreement with the 
visible relationships between classes observed in Figure 7 
with Opt MH displaying less class separation than the full 89 
band spectrum.

Figure 7. Score plots from principal component analyses for (a) MH, (b) reduced MH range and (c) TH.

Light source
Calibration 

(rep 1)
Validation 

(rep 2)
Test 

(rep 3)
PC 1 

mean
PC 2 

mean
PC 3 

mean
Metal halide 100.00 100.00 100.00 81.33 14.00 2.67
Optimal metal halide 100.00 99.33 100.00 90.33 8.00 1.00
Tungsten halogen 100.00 100.00 100.00 76.67 15.67 5.33

Results expressed as percent (%);PC = principal component

Table 1. Classification accuracy (%) of principal component linear discriminate analysis (PC-LDA) for calibration, validation and test set data 
repetitions of MH, tungsten halogen and the optimal MH wavelengths (n = 300, for each repetition and light source).
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Conclusions
The objective of this methodology is to develop an early and 
rapid identification protocol for use during food-borne disease 
outbreaks, food safety screenings or with early detection of 
blood-borne pathogens that can lead to a targeted response 
to pathogenic infections in medical patients. Further work in 
bacteria target extraction is needed; however, in this experi-
ment the ability to identify Salmonella serotypes by different 
light sources and variable reduction is conveyed. This experi-
ment shows the potential for rapid detection through collec-
tion of HMIs is possible with either MH or TH light sources in 
approximately 20 min. We attempted to find an optimal lighting 
source, or a hybrid of the two, collecting only the most infor-
mative spectral bands. Because the classification accura-
cies of both lighting sources were 100%, and it was found 
that the TH spectra could not be reduced while maintaining 
comparable classification accuracies to the full spectrum, a 
hybrid lighting system combining these two sources was not 
necessary. The overall spectra generated by MH and TH are 
vastly different, and small optical profile differences observed 
in the light scattering patterns of the cells were noticed, but 
classification with the full spectra did not change. In situa-
tions where data processing and storage reduction is not an 
immediate concern, the TH lamps are typically less expensive 
per rated hour, and may offer more value in observing spectral 
differences across the 89-band spectra, opposed to the sharp 
excitation peaks of MH which may be suited for reduced-
band applications. Data fusion may be possible combining 
the regions. MH lamps show promise in situations where 
reduction of data processing and storage requirements are 
necessary due to heavy applications, but model fit should be 
carefully assessed.
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