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Hyperspectral remote sensing plays an increasingly important role in many scientific domains and everyday life problems. Indeed, this imaging 

concept ends up in applications as varied as catching tax-evaders red-handed by locating new construction and building alterations, searching for 

aircraft and saving lives after fatal crashes, detecting oil spills for marine life and environmental preservation, spying on enemies with reconnais-

sance satellites, watching algae grow as an indicator of environmental health, forecasting weather to warn about natural disasters and much more. 

From an instrumental point of view, we can say that the actual spectrometers have rather good characteristics, even if we can always increase 

spatial resolution and spectral range. In order to extract ever more information from such experiments and develop new applications, we must, 

therefore, propose multivariate data analysis tools able to capture the shape of data sets and their specific features. Nevertheless, actual methods 

often impose a data model which implicitly defines the geometry of the data set. The aim of the paper is thus to introduce the concept of topologi-

cal data analysis in the framework of remote sensing, making no assumptions about the global shape of the data set, but also allowing the capture 

of its local features.
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Introduction
Remote sensing already has a rather long history and started 
around 1950.1 It is obvious that instrumental developments 
have played and continue to play a crucial role in its ascend-
ancy, but spectral data analysis has not been overlooked 
either. Moreover, we can say that the first domain always 
takes advantage of the progress made in the second one 
and vice versa. Many multivariate analysis methods have 
been and are being developed in order to explore remote 
sensing data sets. However, the main challenge of hyper-
spectral imaging (HSI) remains image classification, which 
is the process of grouping pixels into spectrally similar clus-
ters. This task is all the more difficult due to the fact that 
we have to manage data cubes often exceeding several 

hundred thousand pixels. Considering all the data analysis 
methods proposed in the literature, many different models 
are used to try to capture the intrinsic geometric nature of 
a data set.2 The problem with many methods is that they 
implicitly define the geometry of the hyperspectral data set 
in the spectral space. As a consequence, such data models 
often over specify the global nature of a data set and give 
us a biased vision. It is in this sense that we have to propose 
new models without assumptions about the global shape 
of the data, and which are more focused on its local nature. 
Thus, we propose in this paper to explore the concept of 
topological data analysis (TDA) in the framework of remote 
sensing because it shares these characteristics.
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In mathematics, topologists usually study the shape 
of abstract objects. However, they discovered about ten 
years ago that topology could be used to explore large 
and complex data sets. It was the beginning of topolog-
ical data analysis.3,4 Many scientific domains have already 
taken advantage of TDA, including biology and, more 
specifically, genomics,5–7 disease understanding8–10 and 
neuroscience.11–13 To a lesser extent, other fields have 
also benefited from the potential of the method, such 
as analytical chemistry,14 physical chemistry,15 material 
science16 or, even more surprising, for the analysis of NBA 
basketball players’ characteristics or the voting behaviour 
of the members of the US House of Representatives.17 
The diversity of both domains and data structures already 
suggest nice properties of TDA. In the first section of the 
paper, we will introduce topological data analysis. More 
precisely, we will explain how to obtain a topological 
network from a remote sensing data set and, finally, how 
to generate classification maps from it. The Results and 
discussion section will allow us to observe the behaviour 
of TDA for the analysis of a large, remote sensing data set.

Materials and methods
Image data set
The data set we have selected in this work is well-known 
in the remote sensing community. It corresponds to 
the hyperspectral image of the Washington DC Mall 
area in the USA acquired by the Hyperspectral Digital 
Imagery Collection Experiment (HYDICE) sensor on 23 
August 1995.2,18,19 HYDICE is a push broom aircraft 
sensor system providing spectral information from 
400 nm to 2500 nm with an approximate resolution of 
10 nm. However, because of strong water absorption and 
noise, three spectral subdomains (1364.8–1407.2 nm, 
1814.48–1926.31  nm and 2481.4–2506.0 nm) have 
been removed prior to data exploration, reducing the 
total number of spectral variables to 191. This data 
cube consists of 1280 × 307 pixels with a spatial resolu-
tion of 2.8 m. It is often used as a workbench data set 
considering its original form,20–26 i.e. all the available 
pixels or just a cropped version of it.26–41 In our case, the 
whole data set of almost 400,000 pixels has been used 
to show the good scalability of the proposed concept. 
In the literature, the data set is also used for purposes 
such as supervised classification,18,19,21,25,27,29,30,33,34 clus-
tering20,23,24,26,31,32,36,38,39 and, to a lesser extent, in signal 

unmixing.28,35,40 We will explore it, in our own turn, with 
topological data analysis in order to generate clusters 
highlighting different materials in the scene. Six to seven 
classes (buildings, trees, grass, water, roads, trays and 
shadow) are usually considered for this image. Ground 
truth data are available for this image, but the Google 
Maps website could also be used even if changes may 
have occurred since 1995. The image HYDICE can be 
downloaded from Purdue University's website (https://
engineering.purdue.edu/~biehl/MultiSpec/hyperspec-
tral.html).

Using topological data analysis in remote 
sensing
In topological data analysis, we generate a topological 
network which represents the shape of the explored 
data set. In this section, we will discover the way we 
construct such a network and how to obtain classifi-
cation maps from it. Figure 1 gives us a global view of 
the concept. First, each pixel of the image is observed 
through what we call a “lens”. In fact, all functions that 
produce a value from a pixel can be a lens. It can be 
selected from different domains such as statistics, geom-
etry, chemometrics and much more. A lens value is then 
obtained for each pixel. Given the lens value scale, we 
divide it into overlapping subsets. In this way we parti-
tion the data set. We then apply a cluster analysis to 
each pixel’s subset. The single linkage algorithm42 is often 
used for this task. We are thus beginning to construct 
the topological network. Indeed, each cluster from each 
pixel’s subset is represented by a node. Nodes are also 
connected by edges when they share at least one pixel. 
A hot colour node indicates a high number of pixels in 
the considered cluster. In a final step, the network is split 
into different groups of pixels according to the node’s 
density and/or particular features of the network shape. 
Classification maps are then generated. For this work, the 
Ayasdi software platform (ayasdi.com, Ayasdi Inc., Menlo 
Park, CA, USA) was used for TDA. Final classification 
maps were generated with an additional Python script in 
connection with the Ayasdi Python SDK.

Results and discussion
The first task of TDA is to generate a topological network 
which represents the shape of the explored data 
set. Figure 2A gives its first representation using the 
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so-called variance normalised Euclidian distance and the 
“Neighbourhood” lens. The variance normalised Euclidean 
(VNE) distance between two points takes into account 
that each column in the data set could have significantly 
different variance. Thus, the distance between two pixels 
(i.e. spectra) x and y is given by Equation 1:
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with xi the reflectance at the spectral variable i of the 
pixel x, n the total number of variables and vi the variance 
associated with the spectral variable i.

The “Neighbourhood” lens generates an embed-
ding of high-dimensional data into two dimensions by 
embedding a k-nearest neighbours graph of the data. A 
k-nearest neighbours graph is generated by connecting 
each point to its nearest neighbours. This graph is 
embedded in two-dimensions using Ayasdi’s proprie-
tary graph layout algorithm. Looking at this network, we 
have to remember that a node in this wireframe repre-
sents a group of pixels with similar spectra. Moreover, 
an edge between two nodes indicates at least one pixel 
in common. Colouring of nodes is also a way to repre-
sent the number of pixels they contain. Considering the 
histogram provided in Figure 2A, the highest number of 

pixels per nodes (represented in red in this network) is 
647, while the lowest is just one pixel (in dark blue). We 
discover that a topological network exhibits different 
geometric features, such as flairs and loops, but also 
different regions of varying densities. As indicated in 
the previous section of the paper, it is now necessary to 
split the network in order to generate different groups 
of pixels. Groupings have been obtained in an automatic 
way with agglomerative hierarchical clustering (AHCL). 
This “auto-grouping” algorithm is based on the nodes’ 
colouring of the network. Basically, this algorithm works 
to collect connected nodes with similar colour values 
(i.e. pixel density) together into groups. It achieves this 
by treating edges that have very different colours on 
their ends as “weak” edges, while edges that connect 
nodes of the same colour are “strong”. AHCL then uses 
Louvain modularity to identify clusters of nodes that are 
connected by these “strong” edges. The Louvain method 
for community detection is a well-known method to 
extract communities from large networks.43 Figure 2B 
presents the topological network splitting. It is interesting 
to note that the proposed grouping could correspond 
to the one we may generate intuitively by hand. Table 
1 provides information about groups with the number 
of nodes, the number of pixels and the percentage they 
represent with respect to the total number of pixel in 

Figure 1. Topological data analysis in the framework of remote sensing.
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the data set (i.e. almost 400,000 pixels). Therefore, the 
first ten bigger groups contain around 5–6% of the total 
number of pixels each, while the smaller ones contain 
less than 0.05%. We can thus expect the possibility to 
observe minor and major contributions together in the 
final classification map. However, groups with less than 
100 pixels have been considered as non-significant. It is 
now interesting to generate classification maps for the 
60 selected groups of pixels. For obvious reasons, it is 
impossible to find an optimal look-up table in order to 
encode each group of pixels in one classification map 
with good contrast. We thus decided to generate a clas-
sification map with the first ten most important groups, a 
second one with the following ten and so on. It is also a 
good way to potentially observe features corresponding 
to very small groups with low numbers of pixels. Figures 
3B–F show classification maps for all considered groups. 
Corresponding Matlab fig files can be downloaded from 

the Supplementary Material section of this paper’s online 
abstract at https://doi.org/10.1255/jsi.2018.a1 for closer 
observation. Figure 3A presents an image of the consid-
ered Washington DC Mall area using the 60th variable (i.e. 
758.89 nm) of the data cube. A grid with labelled columns 
and rows has also been added to this image in order to 
ease localisation of the particular zones discussed below. 
By looking at all these figures, it is not hard to see that 
we can observe more than the six to seven classes (i.e. 
water, buildings, grass, trees, roads, paths and shadow) 
usually observed in the literature for the exploration of 
the same data set.

In the next part, we propose to focus on each category, 
starting with the contribution of water, in this scene. In 
Figure 3B, group 30 (5.53% of the total pixels) seems to 
be linked with deep water such as, for example, in the 
Potomac River (A1:2, B1), in the Tidal Basin (E1, F1, G1:2, 
H1:2, I1) and in the Constitution Gardens Pond (E4:5, F4:5). 

Figure 2. The topological network generated from the HYDICE data set (A) and its splitting in groups of pixels (B).

https://doi.org/10.1255/jsi.2018.a1
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Table 1. Description of the groups obtained from 
the splitting of the topological network.
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In Figure 3F, group 50 (0.65% of the total pixels) shows 
areas with shallower waters, mainly from the Lincoln 
Memorial Reflecting Pool (lower part of C4, D4, E4, F4). 
This contribution is also observed to a lesser extent on 
the left border of the Constitution Gardens Pond (E4:5). It 

is also interesting to see that Group 22 (Figure 3F, 0.41% 
of the total pixels) allows us to discriminate even shal-
lower waters in the small basin and fountains. The major 
contribution is observed for the fountain located on the 
right-hand side of the Lincoln Memorial Reflecting Pool 

Figure 3. The scene observed at 758.89 nm (A) and corresponding classification maps (B–F).
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(G3:4) and the Capitol Memorial Reflecting Pool (T3:4). 
Other fountains are also detected, such as the one in 
front of the Smithsonian National Museum of American 
History (L5, a 20-pixel surface) or Bartholdi Park (U2, a 
26-pixel surface). The author advises readers to down-
load the Matlab fig files in order to observe such details in 
the images. We can go even further by detecting smaller 
fountains, such as the one in front of the National Gallery 
of Art (R6, 3 pixels) or two others in the courtyard of the 
US House of Representatives (V2, 2 pixels for the first 
one and 1 pixel for the second). In this first part of explo-
ration, we observe that TDA is able to discriminate water 
areas with different depths, but also extract groups with 
very low numbers of pixels. In Figure 3F, pixels of group 
19 seems to be linked with pixels of group 30 (Figure 3B) 
with the highest contributions observed on the bank of 
the Potomac River (A2, B1), the lower part of the Tidal 
Basin (G2:H2) and to a lesser extent on the border of 
the Constitution Gardens Pond (E4:5). It is difficult to 
say whether this new group of pixels highlights a new 
water depth or the detection of particular material such 
as alluvium. It should also be noted that the four groups 
discussed in this first part are all located at the left end of 
the topological network (Figure 2B).

Focusing now on buildings, previous papers have often 
considered them as a unique class. TDA seems to suggest 
a more detailed analysis considering different roofing 
materials. The majority of buildings are observed in Figure 
3B. Group 60 (5.43% of the total pixels) corresponds to a 
first roofing material present on the United States Capitol 
(W3:4) and other buildings (X5:6, Y5:6, X1:2, Y1:2, Q2, 
K1, L1, 03, C6, L6, P5, R6). A second roofing material 
is linked with group 38 (5.49% of the total pixels, N2, 
01:2, P1, Q1, R1, S1:2, T1:2 U2). Another very specific 
material is observed on the roof of the US House of 
Representatives (Group 40, 5.84% the total pixels, V2, 
W2). Surprisingly, we also retrieve this last contribution 
not on roofs but along the JFK Hockey Fields (C3, D3, E3, 
F3) or even on paths around the Washington Monument 
(H3:4, I3:5, J3:5). Group 35 (5.84% the total pixels) high-
lights another specific material on the roof of two build-
ings (L2, M2, T1, U1), in the courtyard (X1:2, Y1:2) or 
around other buildings (T2, U2, S5) and monuments (I4, 
A3:4, B3:4). Last, in Figure 3D, group 48 (2.40% of the 
total pixels) is also linked to another roof type (K6, L6, 
M6, N6, 06, P6). Once again, all these different groups 
(60, 38, 40, 35 and 48) are in the same area on the right-
hand part of the topological network.

Detection of roads and paths is also very important in 
remote sensing. Main roads are observed in Figure 3C. 
Group 29 (3.14% of the total pixels) in red and group 
21 (3.51% of the total pixels) in orange represent them. 
However, all these roads are asphalted. It, therefore, can 
be concluded that TDA detects two different materials. 
It is noticeable too that these two groups are quite far 
from each other in the topological network. At that 
level, however, it is too soon to draw any conclusions 
concerning the exact origin of this difference. It could 
be due to different formulations of bitumen or ageing 
levels. In Figure 3B, group 32 (5.63% of the total pixels) 
in red seems to correspond to another type of road. In 
reality, the observation of the Smithsonian National Air 
and Space Museum (Q3, R3) indicates quite the oppo-
site. Indeed, highlighted parts of this building corre-
spond to metallic structures. Then it is understandable 
that the group 32 allows us to detect this particular 
material in the scene, which is really uncommon. As a 
consequence, cars in circulation could be detected on 
main roads (e.g. N2, 02, P2). Moreover, heavy traffic 
zones or traffic jams are certainly observed (S3, S1, T1, 
U1, V1, P6 and Q6). Similarly, parked cars are detected 
along “L’enfant Plaza” (N1:2), at the side of the Capitol 
Reflecting Pool (T3, U3, T5, U5), around the Lincoln 
Memorial (A4, B4) or in car parks of some buildings (L3, 
M3, N5, 05). It is even possible to see smaller details 
such as streetlights along paths from the Peace monu-
ment or the Garfield Circle (V3:4) to the United States 
Capitol. Group 35 (5.83% of the total pixels) in Figure 
3B corresponds to paved zones in courtyard of build-
ings (X1:2, Y1:2, 06), sometimes on their roof (T1, U1, 
R2, L2, M2) or their surroundings (T2, U2, R5, S5, D2). 
This same material can be retrieved on some paths (I3, 
J4) around the Constitution Gardens Pond (E4:E5, F4:5) 
and the Lincoln Memorial (A3:4, B3:4). A last contribu-
tion in specific zones is represented by group 34 in 
Figure 3B (5.99% of the total pixels, U1, V1, S1, T1, 
N1:2, A3, B3:4).

Soil covers and vegetation also remain a central focus 
in remote sensing. Four soil types are observed in Figures 
3B and 3C. The first one (group 45, 6.26% of the total 
pixels) is particularly present around the United States 
Capitol (V3:4, W3:5, X3:4), but also to a lesser extent on 
small parcels of land (W1, X1, P4, H4, C1, D1, C5). The 
second soil type (group 41, 6.55% of the total pixels) 
is mainly located around the Washington Monument 
(H4:6, I3:6, J4:6), along the National Mall (L4, M4, N4, 
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04, Q4, R4, S4), near the Lincoln Memorial (A4:6) or 
between the Potomac River and the Tidal Basin (B1, C1, 
D1). In Figure 3C, two other types of soils (group 31, 
4.55% of the total pixels and group 17, 2.77% of the 
total pixels) are also observed in the same zone. For their 
part, group 46 (5.28% of the total pixels) and 27 (4.57% 
of the total pixels) represent trees. When pixels of the 
two groups are present in the same area, it allows us to 
detect big trees and smaller ones when pixels of group 
46 are only observed. Thus, group 27 should correspond 
to the shadow of trees. Group 49 (5.92% of the total 
pixels) in Figure 3B is also linked to the presence of trees. 
Big trees are mainly observed around the United States 
Capitol (V5, W5, X3:5, W3, V3) and on both sides of the 
Lincoln Memorial Reflecting Pool (C4, D4, E4, F4). Zones 
with small trees are observed, for example, near the Tidal 
Basin (C1, D1, E2, F2).

Of course, other groups have been generated with 
TDA, but the corresponding pixels were so spread in the 
scene that it was difficult to propose a clear identification 
of materials. This in no way detracts from the fact that 
TDA is able to extract many different kinds of materials 
revealing new promising areas in remote sensing.

Conclusion
The main objective of this paper was to introduce the 
concept of topological data analysis in the framework 
of remote sensing. Indeed, a large number of papers 
have already demonstrated that TDA has nice proper-
ties for the exploration of large data sets. These first 
results are encouraging, because it seems possible to 
extract different kinds of materials which are usually 
not considered. Moreover, we have to remember that 
this approach does not impose a data model. In this 
way, we can imagine that such approach could better 
manage non-linearities, which is quite unusual for many 
classical methods in remote sensing. We have seen 
also that TDA is able to generate classes even if they 
contain a small number of pixels. This characteristic is 
very important, because a real exploration of the scene 
is only obtained when major and minor contributions 
are detected simultaneously. We are conscious that this 
paper is a first introduction of TDA in remote sensing 
and that a deeper study is necessary, but these results 
seem to promise an excellent behaviour and very good 
properties. 

References
1.	 J.R. Schott, Remote Sensing: The Image Chain 

Approach, 2nd Edn. Oxford University Press, New 
York (2007).

2.	 D. Landgrebe, “Hyperspectral image data analy-
sis”, IEEE Signal Process. Mag. 19(1), 17 (2002). doi: 
https://doi.org/10.1109/79.974718

3.	 G. Carlsson, “Topology and data”, Bull. Am. Math. 
Soc. 46(2), 255 (2009). doi: https://doi.org/10.1090/
S0273-0979-09-01249-X

4.	 G. Singh, F. Mémoli and G.E. Carlsson, “Topological 
methods for the analysis of high dimensional data 
sets and 3D object recognition.”, in SPBG, p. 91 
(2007).

5.	 P.G. Cámara, “Topological methods for genom-
ics: present and future directions”, Curr. Opin. Syst. 
Biol. 1, 95 (2017). doi: https://doi.org/10.1016/j.
coisb.2016.12.007

6.	 C.W. Bartlett, S.Y. Cheong, L. Hou, J. Paquette, 
P.Y. Lum, G. Jäger, F. Battke, C. Vehlow, J. Heinrich, 
K. Nieselt, R. Sakai, J. Aerts and W.C. Ray, “An 
eQTL biological data visualization challenge and 
approaches from the visualization community”, BMC 
Bioinformatics 13 Suppl 8, S8 (2012). doi: https://doi.
org/10.1186/1471-2105-13-S8-S8

7.	 J.M. Gilmore, M.E. Sardiu, B.D. Groppe, 
J.L. Thornton, X. Liu, G. Dayebgadoh, C.A. Banks, 
B.D. Slaughter, J.R. Unruh, J.L. Workman, L. Florens 
and M.P. Washburn, “WDR76 co-localizes with het-
erochromatin related proteins and rapidly responds 
to DNA damage”, PloS One 11(6), e0155492 (2016). 
doi: https://doi.org/10.1371/journal.pone.0155492

8.	 J.M. Chan, G. Carlsson and R. Rabadan, “Topology 
of viral evolution”, Proc. Natl. Acad. Sci. 110(46), 
18566 (2013). doi: https://doi.org/10.1073/
pnas.1313480110

9.	 G. Sarikonda, J. Pettus, S. Phatak, S. 
Sachithanantham, J.F. Miller, J.D. Wesley, E. Cadag, 
J. Chae, L. Ganesan, R. Mallios, S. Edelman, B. Peters 
and M. von Herrath, “CD8 T-cell reactivity to 
islet antigens is unique to type 1 while CD4 T-cell 
reactivity exists in both type 1 and type 2 diabe-
tes”, J. Autoimmun. 50, 77 (2014). doi: https://doi.
org/10.1016/j.jaut.2013.12.003

10.	D. Romano, M. Nicolau, E.-M. Quintin, P.K. Mazaika, 
A.A. Lightbody, H.C. Hazlett, J. Piven, G. Carlsson 
and A.L. Reiss, “Topological methods reveal high and 

https://doi.org/10.1109/79.974718
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1016/j.coisb.2016.12.007
https://doi.org/10.1016/j.coisb.2016.12.007
https://doi.org/10.1186/1471-2105-13-S8-S8
https://doi.org/10.1186/1471-2105-13-S8-S8
https://doi.org/10.1371/journal.pone.0155492
https://doi.org/10.1073/pnas.1313480110
https://doi.org/10.1073/pnas.1313480110
https://doi.org/10.1016/j.jaut.2013.12.003
https://doi.org/10.1016/j.jaut.2013.12.003


L. Duponchel, J. Spectral Imaging 7, a1 (2018)	 9

low functioning neuro-phenotypes within fragile 
X syndrome”, Hum. Brain Mapp. 35(9), 4904 (2014). 
doi: https://doi.org/10.1002/hbm.22521

11.	G. Singh, F. Memoli, T. Ishkhanov, G. Sapiro, 
G. Carlsson and D.L. Ringach, “Topological analysis 
of population activity in visual cortex”, J. Vis. 8(8), 11 
(2008). doi: https://doi.org/10.1167/8.8.11

12.	J.L. Nielson, J. Paquette, A.W. Liu, C.F. Guandique, 
C.A. Tovar, T. Inoue, K.-A. Irvine, J.C. Gensel, 
J. Kloke, T.C. Petrossian, P.Y. Lum, G.E. Carlsson, 
G.T. Manley, W. Young, M.S. Beattie, J.C. Bresnahan 
and A.R. Ferguson, “Topological data analysis for 
discovery in preclinical spinal cord injury and trau-
matic brain injury”, Nat. Commun. 6, 8581 (2015). 
doi: https://doi.org/10.1038/ncomms9581

13.	J.L. Nielson, S.R. Cooper, J.K. Yue, M.D. Sorani, 
T. Inoue, E.L. Yuh, P. Mukherjee, T.C. Petrossian, 
J. Paquette, P.Y. Lum, G.E. Carlsson, M.J. Vassar, 
H.F. Lingsma, W.A. Gordon, A.B. Valadka, 
D.O. Okonkwo, G.T. Manley, A.R. Ferguson and 
TRACK-TBI Investigators, “Uncovering precision 
phenotype-biomarker associations in traumatic 
brain injury using topological data analysis”, PLOS 
ONE 12(3), e0169490 (2017). doi: https://doi.
org/10.1371/journal.pone.0169490

14.	A. Savic, G. Toth and L. Duponchel, “Topological 
data analysis (TDA) applied to reveal pedoge-
netic principles of European topsoil system”, Sci. 
Total Environ. 586, 1091 (2017). doi: https://doi.
org/10.1016/j.scitotenv.2017.02.095

15.	M. Offroy and L. Duponchel, “Topological data 
analysis: a promising big data exploration tool in 
biology, analytical chemistry and physical chemis-
try”, Anal. Chim. Acta 910, 1 (2016). doi: https://doi.
org/10.1016/j.aca.2015.12.037

16.	Y. Lee, S.D. Barthel, P. Dłotko, S.M. Moosavi, 
K. Hess and B. Smit, “Quantifying similarity of pore-
geometry in nanoporous materials”, Nat. Commun. 
8, 15396 (2017). doi: https://doi.org/10.1038/
ncomms15396

17.	P.Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. 
Vejdemo-Johansson, M. Alagappan, J. Carlsson and 
G. Carlsson, “Extracting insights from the shape 
of complex data using topology”, Sci. Rep. 3, 1236 
(2013). doi: https://doi.org/10.1038/srep01236

18.	J.E. Ball and L.M. Bruce, “Level set segmenta-
tion of remotely sensed hyperspectral images”, in 
Geoscience and Remote Sensing Symposium, 2005. 
IGARSS’05. Proceedings. 2005 IEEE International, 

8, p. 5638 (2005). doi: https://doi.org/10.1109/
IGARSS.2005.1526055

19.	J.E. Ball and L.M. Bruce, “Accuracy analysis of hyper-
spectral imagery classification using level sets”, in 
Proceedings of the 2006 ASPRS Annual Conference 
(2006).

20.	H.G. Akçay and S. Aksoy, “Automatic detection 
of geospatial objects using multiple hierarchical 
segmentations”, IEEE Trans. Geosci. Remote Sens. 
46(7), 2097 (2008). doi: https://doi.org/10.1109/
TGRS.2008.916644

21.	J. Li and Y. Qian, “Clustering-based hyperspectral 
band selection using sparse nonnegative matrix fac-
torization”, J. Zhejiang Univ.-Sci. C 12(7), 542 (2011).

22.	J. Theiler, G. Cao, L.R. Bachega and C.A. Bouman, 
“Sparse matrix transform for hyperspectral 
image processing”, IEEE J. Sel. Top. Signal Process. 
5(3), 424 (2011). doi: https://doi.org/10.1109/
JSTSP.2010.2103924

23.	G. Bilgin, S. Erturk and T. Yildirim, “Segmentation 
of hyperspectral images via subtractive cluster-
ing and cluster validation using one-class support 
vector machines”, IEEE Trans. Geosci. Remote Sens. 
49(8), 2936 (2011). doi: https://doi.org/10.1109/
TGRS.2011.2113186

24.	J.C. Tilton, Y. Tarabalka, P.M. Montesano and 
E. Gofman, “Best merge region-growing segmen-
tation with integrated nonadjacent region object 
aggregation”, IEEE Trans. Geosci. Remote Sens. 
50(11), 4454 (2012). doi: https://doi.org/10.1109/
TGRS.2012.2190079

25.	Q. Lu, X. Huang and L. Zhang, “A novel clustering-
based feature representation for the classification 
of hyperspectral imagery”, Remote Sens. 6(6), 5732 
(2014). doi: https://doi.org/10.3390/rs6065732

26.	X. Huang, X. Liu and L. Zhang, “A multichannel gray 
level co-occurrence matrix for multi/hyperspec-
tral image texture representation”, Remote Sens. 
6(9), 8424 (2014). doi: https://doi.org/10.3390/
rs6098424

27.	J.M. Duarte-Carvajalino, G. Sapiro, M. Velez-Reyes 
and P.E. Castillo, “Multiscale representation and 
segmentation of hyperspectral imagery using geo-
metric partial differential equations and algebraic 
multigrid methods”, IEEE Trans. Geosci. Remote Sens. 
46(8), 2418 (2008). doi: https://doi.org/10.1109/
TGRS.2008.916478

28.	S. Jia and Y. Qian, “Constrained nonnegative matrix 
factorization for hyperspectral unmixing”, IEEE Trans. 

https://doi.org/10.1002/hbm.22521
https://doi.org/10.1167/8.8.11
https://doi.org/10.1038/ncomms9581
https://doi.org/10.1371/journal.pone.0169490
https://doi.org/10.1371/journal.pone.0169490
https://doi.org/10.1016/j.scitotenv.2017.02.095
https://doi.org/10.1016/j.scitotenv.2017.02.095
https://doi.org/10.1016/j.aca.2015.12.037
https://doi.org/10.1016/j.aca.2015.12.037
https://doi.org/10.1038/ncomms15396
https://doi.org/10.1038/ncomms15396
https://doi.org/10.1038/srep01236
https://doi.org/10.1109/IGARSS.2005.1526055
https://doi.org/10.1109/IGARSS.2005.1526055
https://doi.org/10.1109/TGRS.2008.916644
https://doi.org/10.1109/TGRS.2008.916644
https://doi.org/10.1109/JSTSP.2010.2103924
https://doi.org/10.1109/JSTSP.2010.2103924
https://doi.org/10.1109/TGRS.2011.2113186
https://doi.org/10.1109/TGRS.2011.2113186
https://doi.org/10.1109/TGRS.2012.2190079
https://doi.org/10.1109/TGRS.2012.2190079
https://doi.org/10.3390/rs6065732
https://doi.org/10.3390/rs6098424
https://doi.org/10.3390/rs6098424
https://doi.org/10.1109/TGRS.2008.916478
https://doi.org/10.1109/TGRS.2008.916478


10	 When Remote Sensing Meets Topological Data Analysis

Geosci. Remote Sens. 47(1), 161 (2009). doi: https://
doi.org/10.1109/TGRS.2008.2002882

29.	Y.-Q. Zhao, L. Zhang and S.G. Kong, “Band-subset-
based clustering and fusion for hyperspectral 
imagery classification”, IEEE Trans. Geosci. Remote 
Sens. 49(2), 747 (2011). doi: https://doi.org/10.1109/
TGRS.2010.2059707

30.	H. Su, Y. Sheng, P. Du and K. Liu, “Adaptive affinity 
propagation with spectral angle mapper for semi-
supervised hyperspectral band selection”, Appl. Opt. 
51(14), 2656 (2012). doi: https://doi.org/10.1364/
A0.51.002656

31.	N. Wang, B. Du and L. Zhang, “An endmember dis-
similarity constrained non-negative matrix factoriza-
tion method for hyperspectral unmixing”, IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens. 6(2), 554 (2013). 
doi: https://doi.org/10.1109/JSTARS.2013.2242255

32.	S.D. Xenaki, K.D. Koutroumbas, A.A. Rontogiannis 
and O.A. Sykioti, “A layered sparse adaptive possibil-
istic approach for hyperspectral image clustering”, in 
Geoscience and Remote Sensing Symposium (IGARSS), 
2014 IEEE International, p. 2890 (2014). doi: https://
doi.org/10.1109/IGARSS.2014.6947080

33.	H. Su and P. Du, “Multiple classifier ensembles with 
band clustering for hyperspectral image classifica-
tion”, Eur. J. Remote Sens. 47(1), 217 (2014). doi: 
https://doi.org/10.5721/EuJRS20144714

34.	H. Su, Y. Sheng, P. Du, C. Chen and K. Liu, 
“Hyperspectral image classification based on 
volumetric texture and dimensionality reduction”, 
Front. Earth Sci. 9(2), 225 (2015). doi: https://doi.
org/10.1007/s11707-014-0473-4

35.	W. Wang, Y. Qian and Y.Y. Tang, “Hypergraph-
regularized sparse NMF for hyperspectral unmix-
ing”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
9(2), 681 (2016). doi: https://doi.org/10.1109/
JSTARS.2015.2508448

36.	H. Zhai, H. Zhang, L. Zhang and P. Li, “Reweighted 
mass center based object-oriented sparse sub-

space clustering for hyperspectral images”, J. Appl. 
Remote Sens. 10(4), 046014 (2016). doi: https://doi.
org/10.1117/1.JRS.10.046014

37.	W. Wei, L. Zhang, C. Tian, A. Plaza and Y. Zhang, 
“Structured sparse coding-based hyperspectral 
imagery denoising with intracluster filtering”, IEEE 
Trans. Geosci. Remote Sens. 1 (2017). doi: https://doi.
org/10.1109/TGRS.2017.2735488

38.	W. Yang, K. Hou, B. Liu, F. Yu and L. Lin, “Two-stage 
clustering technique based on the neighboring 
union histogram for hyperspectral remote sensing 
images”, IEEE Access 5, 5640 (2017). doi: https://doi.
org/10.1109/ACCESS.2017.2695616

39.	H. Su, Y. Cai and Q. Du, “Firefly-algorithm-inspired 
framework with band selection and extreme learn-
ing machine for hyperspectral image classifica-
tion”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
10(1), 309 (2017). doi: https://doi.org/10.1109/
JSTARS.2016.2591004

40.	L. Tong, J. Zhou, X. Li, Y. Qian and Y. Gao, “Region-
based structure preserving nonnegative matrix 
factorization for hyperspectral unmixing”, IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens. 10(4), 1575 (2017). 
doi: https://doi.org/10.1109/JSTARS.2016.2621003

41.	F. Fan, Y. Ma, C. Li, X. Mei, J. Huang and J. Ma, 
“Hyperspectral image denoising with superpixel 
segmentation and low-rank representation”, Inf. Sci. 
397–398, 48 (2017). doi: https://doi.org/10.1016/j.
ins.2017.02.044

42.	R. Sibson, “SLINK: an optimally efficient algorithm for 
the single-link cluster method”, Comput. J. 16(1), 30 
(1973). doi: https://doi.org/10.1093/comjnl/16.1.30

43.	V.D. Blondel, J.-L. Guillaume, R. Lambiotte and 
E. Lefebvre, “Fast unfolding of communities in 
large networks”, J. Stat. Mech. Theory Exp. 2008(10), 
P10008 (2008). doi: https://doi.org/10.1088/1742-
5468/2008/10/P10008

https://doi.org/10.1109/TGRS.2008.2002882
https://doi.org/10.1109/TGRS.2008.2002882
https://doi.org/10.1109/TGRS.2010.2059707
https://doi.org/10.1109/TGRS.2010.2059707
https://doi.org/10.1364/A0.51.002656
https://doi.org/10.1364/A0.51.002656
https://doi.org/10.1109/JSTARS.2013.2242255
https://doi.org/10.1109/IGARSS.2014.6947080
https://doi.org/10.1109/IGARSS.2014.6947080
https://doi.org/10.5721/EuJRS20144714
https://doi.org/10.1007/s11707-014-0473-4
https://doi.org/10.1007/s11707-014-0473-4
https://doi.org/10.1109/JSTARS.2015.2508448
https://doi.org/10.1109/JSTARS.2015.2508448
https://doi.org/10.1117/1.JRS.10.046014
https://doi.org/10.1117/1.JRS.10.046014
https://doi.org/10.1109/TGRS.2017.2735488
https://doi.org/10.1109/TGRS.2017.2735488
https://doi.org/10.1109/ACCESS.2017.2695616
https://doi.org/10.1109/ACCESS.2017.2695616
https://doi.org/10.1109/JSTARS.2016.2591004
https://doi.org/10.1109/JSTARS.2016.2591004
https://doi.org/10.1109/JSTARS.2016.2621003
https://doi.org/10.1016/j.ins.2017.02.044
https://doi.org/10.1016/j.ins.2017.02.044
https://doi.org/10.1093/comjnl/16.1.30
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008

