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Recent development of hard winter waxy (amylose-free) wheat adapted to the North American climate has prompted the quest to find a rapid 

method that will determine mixture levels of conventional wheat in lots of identity preserved waxy wheat. Previous work documented the use of 

conventional near infrared (NIR) reflectance spectroscopy to determine the mixture level of conventional wheat in waxy wheat, with an examined 

range, through binary sample mixture preparation, of 0–100% (weight conventional / weight total). The current study examines the ability of NIR 

hyperspectral imaging of intact kernels to determine mixture levels. Twenty-nine mixtures (0, 1, 2, 3, 4, 5, 10, 15, …, 95, 96, 97, 98, 99, 100%) were 

formed from known genotypes of waxy and conventional wheat. Two-class partial least squares discriminant analysis (PLSDA) and statistical pat-

tern recognition classifier models were developed for identifying each kernel in the images as conventional or waxy. Along with these approaches, 

conventional PLS1 regression modelling was performed on means of kernel spectra within each mixture test sample. Results indicated close 

agreement between all three approaches, with standard errors of prediction for the better preprocess transformations (PLSDA models) or better 

classifiers (pattern recognition models) of approximately 9 percentage units. Although such error rates were slightly greater than ones previously 

published using non-imaging NIR analysis of bulk whole kernel wheat and wheat meal, the HSI technique offers an advantage of its potential use 

in sorting operations.
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Introduction
Waxy starches in cereal grains arise from the near complete 
absence of the linear chain [a-(1→4)-linked glucan units] 
macromolecule amylose, thus causing the starch to be 
composed exclusively of the branched [a -(1→6)-linkages] 
chain macromolecule amylopectin. In hexaploid wheat 
(Triticum aestivum L.), the waxy condition arises from 

the simultaneous presence of null mutations at each of 
the three genetic loci (Wx-A1, Wx-B1 and Wx-D1) that 
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encode for the enzyme granule bound starch synthase 
(GBSS) which controls amylose synthesis. Starting with the 
development of waxy wheat genotypes in Japan,1 wheat 
breeding programmes in other regions have developed 
geographically adapted waxy wheats, including those 
in the US northern Great Plains.2 The reason for such 
breeding efforts has been the possibility that well-adapted, 
amylose-free or low-amylose wheat possesses unique 
starch processing properties that are independent of the 
usual protein dominated functional characteristics.3 Such 
wheats may offer unique uses for shelf life extension, 
ethanol production and non-food applications.4–6

From the perspective of commodity trade, the higher 
value for waxy wheat and the consequential need to 
keep it identity preserved require a rapid method for 
inspection of lots to verify pureness. Visual inspection 
is difficult due to the similarity in colour, size and shape 
of waxy and conventional wheat. Although genotyping 
can be performed by PCR,7–9 by protein analysis of the 
GBSS isoforms by ELISA10 or even by iodine staining and 
counting kernels,11 such procedures are not amenable to 
rapid analysis or feasible at commodity sales points. As an 
alternative, the authors have studied the use of conven-
tional near infrared (NIR) spectroscopy for distinguishing 
waxy wheat from conventional wheat.12–14 More recent 
studies have examined the ability of NIR reflectance spec-
troscopy of bulk wheat or wheat meal to estimate the 
percentage by weight of conventional seed in mixtures of 
waxy and conventional wheat,15,16 with standard errors 
typically ranging from 4% to 9%. With the vibrational 
frequencies of carbohydrate backbone structure outside 
the NIR region, the challenges to the NIR approach stem 
from chemical similarities of amylopectin and amylose 
molecules, thus leaving the possibilities of measurable 
differences to be from hydrogen-bonding effects or the 
presence of an amylose–lipid complex. Traditionally, the 
NIR method involves collecting spectra on bulk kernels or 
ground meal and, in either case, this means a composite of 
hundreds. Alternatively, hyperspectral imaging (HSI) offers 
the ability to develop spectrally based models at the indi-
vidual kernel level, while doing so on all kernels within the 
hypercube image. To date, published work involving HSI 
analysis of constituents in cereals is limited, with studies 
focused on macro constituent analysis such as protein, oil 
and starch in maize,17 hardness in wheat18 or classification 
of waxy maize varieties.19 In the authors’ previous research 
on wheat endosperm amylose concentration by NIR,14 it 
was suggested that changes in the strengths of the C–H 

bonds and the hydrogen bonds, as affected by the differing 
degrees of crystallinity between amylopectin (more crys-
talline) and amylose (less crystalline), are responsible for 
their spectral differences. Additionally, differences in the 
prevalence of the amylose–lipid complex, as described for 
diploid cereal species20 and later for hexaploid wheat,21 
may also produce spectral differences. The intention of 
revisiting the topic of spectral measurement of the waxy 
wheat condition was to determine whether such tech-
niques are applicable at the single kernel level through 
spectral imaging as the first step in the eventual design 
of a system that would use such imaging for sorting of 
kernels by their amylose concentration. Hence, the current 
study’s objective was to examine the potential of HSI to 
measure mixture levels of conventional and waxy wheat 
genotypes using several established chemometric and 
statistical pattern recognition techniques. The samples 
used in this study were the same as used in an earlier study 
on conventional and waxy wheat mixture measurement,15 
thus allowing for the direct comparison of results between 
traditional NIR reflectance spectroscopy and HSI.

Materials and methods
Wheat samples
Hard wheat varieties or advanced breeding lines from 
Nebraska-grown 2011 and 2012 breeders’ grow out 
trials have been previously described.15 Briefly, geno-
types of wheat of the wild type condition for starch 
were paired with an equal number of fully waxy field 
samples (Table 1). Because of the limited supply of waxy 
field samples, an effort was made to select conventional 
samples that were close in protein content to their waxy 
counterparts and originated from the same geographical 
location. Additionally, with two of the waxy field samples 
being of sufficient quantity for additional pairings, 
conventional counterparts were selected to bracket the 
protein content of each field sample. Altogether, eight 
pairings were formed. The parent samples, with each in 
its own canvas bag, were placed in a 50 L polyethylene 
sealed container for a one-month moisture equilibration 
period, whereupon mixture laboratory samples (here-
after called test samples) for each pair were prepared by 
weighing out precisely defined portions to the nearest 
kernel. The equilibration period was imposed to minimise 
any moisture variation between parent samples as the 
causative effect on mixture prediction in NIR model-
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ling. For each pair, 29 mixture samples were created, 
each 50 g in mass, of the following weight concentrations 
(conventional to total weight), in percent: 0, 1, 2, 3, 4, 
5, 10, 15, …, 95, 96, 97, 98, 99, 100. Each test sample 
was thoroughly mixed by hand-tumbling of the material 
contained in an oversized plastic vial. Approximately half 
of each test sample was milled during an earlier study,15 
and therefore not available for the current study. From 
the remaining material in each sample, 20 g was used in 
the HSI data collection.

Equipment
The HSI system, assembled in the USDA Beltsville labo-
ratory, consisted of an InGaAS focal-plane array camera 
of dimensions 320 × 256 pixels and a 14-bit A/D (Xenics, 
Model Xeva-1.7-320, Leuven, Belgium), an imaging 
spectrograph (SWIR Hyperspec, Headwall Photonics, 
Fitchburg, MA, USA), two low-OH fibre optic bundles 
that conveyed light from separate DC-regulated 150 W 
quartz tungsten halogen light sources (Dolan Jenner, 
Model DC-950, Boxborough, MA, USA) to the imaging 
enclosure and a stepper motor movable stage (Velmex, 
Model XN10-0180-M02-21, Bloomfield, NY, USA) that 
moved a frame (described below) containing the kernels 
in a direction perpendicular to the camera’s line field of 
view. The termini of the fibre bundles were single fibres 
arranged in 250 mm lines (overlapping the width of the 
line image field of view), with the two lines oppositely 
oriented at 30° with respect to the vertical and parallel to 
the line field of view. A 25-mm zoom lens (Optec, Model 
OB-SWIR25/2, Parabiago, Italy) was connected to the 
front end of the spectrograph. With a working distance 
of 430 mm (front of lens to object surface), the actual line 
field of view was 180 mm. To maintain square pixels, the 
number of lines was set at 470 and the distance between 

lines was set at 0.56 mm. The 20 g of kernels of each 
test sample, typically about 700 kernels, were spread 
over a 165 mm × 253 mm rectangular region in a plywood 
frame lined with black course grit emery cloth (3M). 
Kernels were manually spread apart to minimise touching 
occurrences. During scanning, the frame was momen-
tarily stopped during collection of a line spectrum, after 
which the stage was advanced the incremental distance 
before collection of the next line. The effective wave-
length range was 940–1650 nm, and with 150 spectral 
bands collected, the average spacing between bands 
was 4.7 nm. Spectral data was stored in two-byte integer 
format in a hypercube of dimensions 320 × 470 × 150. 
Details on the spectral and spatial calibration of the 
system are described elsewhere.22

In this experiment, a dark current image was collected 
on an hourly basis (approximately after every four samples) 
by covering the camera lens. Likewise, a 99% reflec-
tance standard, consisting of sintered PTFE (SpectralonTM, 
SRT-99-120, Labsphere, North Sutton, NH, USA), was 
collected immediately after the dark current image. These 
two images were subsequently applied to the sample 
images collected before the next pair of dark current and 

“white standard” images.

Image processing
Data reduction and spectral analysis tasks were performed 
in MATLAB (v. 2016a) equipped with MATLAB’s image 
processing toolbox. The intensity readings of each test 
sample’s hypercube were transformed to reflectance by 
dividing the dark current-subtracted intensity by the dark 
current-subtracted white standard intensity at each of 
the corresponding spectral bands (i.e., image slices). For 
removing the emery cloth background, all pixels having 
reflectance at the tenth band (981 nm) less than 0.3 were 

Variety or line Protein content (% wb) Total lipid content (% wb)
Pair Waxy Conventional Year Waxy Conventional Waxy Conventional
A NX10MD 2216 N11MD2224 2012 13.2 13.1 2.1 1.3
B NX10MD 2216 McGill a 2012 13.2 14.4 2.1 1.8
C NX10MD 2216 Wesley 2012 13.2 15.1 2.1 1.5
D Mattern a N11MD2130 2012 13.3 13.5 1.9 1.7
E Mattern b Jerry 2011 13.7 16.5 1.8 1.5
F NX10MD 2300 McGill b 2012 14.9 13.7 2.1 1.6
G NX10MD 2300 N11MD2182 2012 14.9 14.6 2.1 1.8
H NX10MD 2300 Mace 2012 14.9 15.6 2.1 1.4

Table 1. Description of sample pairs (from Reference 15).



4 Hyperspectral Imaging of Waxy Wheat

set to 0, and the remaining pixels were set to 1. This mask 
was then applied to all slices in the sample’s hypercube. 
Using the tenth band, object (kernel) boundaries were 
first eroded using a disk-shaped structuring element of 
radius 1 to remove pixels along the contour for the reason 
that these would otherwise contribute low reflectance 
spectra due to the curvature of the kernel. Following 
erosion, relevant objects were identified as contiguous 
regions of five or more pixels. Smaller regions were 
discarded. Objects of greater than 35 pixels, indicating 
two or more touching kernels, were likewise discarded. 
The toolbox functions imerode and bwareaopen were 
used in these respective erosion and object identification 
steps. Comparisons of the numbers of kernels identified 
in image processing and human visual counts, performed 
for all of the pure waxy and pure conventional samples, 
indicated close agreement, typically within 2% of the 
actual number. Altogether, the eight pairs, at 29 test 
samples per pair, produced 232 test samples for imaging.

Spectral analysis
Each identified object from image processing, hereafter 
termed a kernel, was reduced to a mean reflectance 
spectrum by averaging over all pixels within the object. 
Noisy conditions at the longest wavelengths led to the 
dropping of five bands at the right end of the spec-
trum, thus leaving 145 “bands” spanning 938–1630 nm. 
Partial least squares (PLS) regression was applied in 
the data analysis using the PLS function and various 
preprocessing functions available in PLS Toolbox 7.3 
(Eigenvector Research, Wenatchee, WA, USA) operating 
in MATLAB. Preprocessing usually consisted of a stan-
dard normal variate (SNV) transformation23 followed 
by a Savitsky–Golay convolution of either smooth, first 
derivative or second derivative, always using a second 
order polynomial approximation.24 Preliminary trial and 
error operations resulted in the choice of a seven-point 
window for all convolutions. The SNV step was neces-
sary to compensate for large differences in overall reflec-
tance among kernels irrespective of their conventional or 
waxy pedigree, as caused by variation in size and shape. 
The exception to these preprocessing steps occurred 
when statistical pattern recognition classifiers were 
implemented as the third of three approaches, in which 
case the reflectance spectra were directly used as input 
features.

Using the preprocessed mean kernel spectra, PLS 
regression models were developed in two of the three 

approaches. In the first approach, a PLS calibration equa-
tion was formed by using the pure conventional and 
pure waxy test samples from seven of the eight pairs. 
Upon randomly selecting 300 conventional kernels and 
an equal number of waxy kernels from each pair, a PLS 
regression calibration was developed, with 0 and 1, 
respectively, assigned to waxy and conventional kernels. 
By trial and error, the number of PLS factors that consist-
ently produced stable results was determined to be seven. 
Hence, each seven-factor PLS calibration was applied to 
all test samples of the left-out pair using the midpoint 
(0.5) as the classification boundary between conventional 
and waxy for each kernel in a test sample. Counts of clas-
sified conventional and waxy kernels within a test sample 
were then used to estimate mixture level percentage Y,
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where i is the summation index over the kernels clas-
sified as conventional c, j is the summation index over 
all kernels c + w and A is the area of a kernel (object) in 
pixels. The 3/2 exponent was a simple attempt to trans-
form the area of an object into a volume, and hence a 
representation of mass (assuming equal physical densi-
ties and shapes between conventional and waxy kernels). 
Once the model was applied to all test samples of the 
removed pair, a new PLS calibration was developed using 
a different set of seven pure conventional and seven 
pure waxy test samples and subsequently applied to all 
test samples of the newly left-out pair. This process was 
repeated until each pair was removed during calibration 
and used in validation. Reported model statistics,25 as 
calculated on each validated pair, included the coefficient 
of determination between actual and modelled mixture 
level (r2), bias and the standard error of prediction (SEP). 
Each figure of merit was eventually averaged over the 
eight pairs for tabulated presentation of results.

In the second approach to modelling, PLS regression 
calibrations were developed using all 29 test samples 
per pair, 7 pairs at a time (n = 203), with each test sample 
represented as one spectrum calculated as the mean 
of all kernel mean spectra within the test sample, and 
the dependent variable as the known mixture level for 
that sample. The calibration equation was applied to the 
29 test samples of the left-out pair, and the calibration 
and validation cycle was then repeated with the inter-
changing of one of the seven pairs with the left-out pair, 
and so on, until each pair had its turn in model validation. 



S.R. Delwiche et al., J. Spectral Imaging 7, a2 (2018) 5

Mixture level residuals were used to calculate the same 
set of statistics as in the first approach.

The third approach involved statistical pattern recogni-
tion classifier functions available in the MATLAB open 
source toolbox PRTools (v. 5.3.3, http://prtools.org), as 
described in the toolbox developer’s book.26 PRTools is a 
statistical pattern recognition toolbox that provides many 
MATLAB-coded routines for classifier training and evalua-
tion, feature selection and extraction, and data and result 
visualisation. Five classifiers in the PRTools were used, 
including stats linear classifier (statslinc), Fisher’s linear 
classifier (fisherc), k-nearest neighbour classifier (knnc), 
decision tree classifier (dtc) and nearest mean classifier 
(nmc). The five classifiers were trained using the original 
mean reflectance spectra from seven of the eight pairs 
of all pure conventional kernels with one label and pure 
waxy kernels with a second label. Adjustable parameters 
were automatically set to default values during model 
training. Each trained classifier was then evaluated by all 
the samples in the left-out pair, with the midpoint (0.5) 
used as the classification boundary between the conven-
tional and waxy kernels. Tallies of kernels weighted by area 
raised to the three halves power in the two classes were 
used to determine the conventional weight percentage in 
the same fashion as the first approach.

An ANOVA (Proc MIXED, SAS Institute, Cary, NC, USA) 
was performed on the three pre-averaged figures of merit 
to evaluate the effect of model type and preprocess or 
classifier.

Ground truth image
For one test sample, upon completing the HSI scanning, a 
slab of white polymer modelling clay (Original SculpeyTM), 
rolled out to the dimension of the scan tray, was placed 
over the kernels and pressed with sufficient pressure 
to embed the kernels in the clay. The slab was cured at 
130°C for 20 min and sanded flat with 100-grit sandpaper 
to expose kernel endosperm. An iodine solution (0.1% 
w/v) was applied to the surface of the slab, whereupon 
conventional kernels were identified by their purple colour.

Results and discussion
The spectral similarity between conventional and waxy 
kernels is shown through the series of preprocess trans-
formations in Figure 1. The upper graph (A) contains 
the grand means of the eight pure conventional and 

Figure 1. Grand mean spectra from all pure waxy and 
pure conventional test samples. The spectra were cal-
culated by calculating the mean spectrum of all kernels 
within the pure conventional and pure waxy sample test 
samples, respectively (graph A), followed by a standard 
normal variate (SNV) normalisation (graph B), then choice 
of a Savitsky–Golay seven-point convolution (2nd order 
polynomial) to produce a first derivative (graph C), or sec-
ond derivative (graph D) of the mean spectra. Also con-
tained in graph A is a ± one standard deviation envelope 
for each mean spectrum.

http://prtools.org
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eight pure waxy test sample spectra, in which each test 
sample’s mean spectrum was calculated as the average of 
approximately 700 individual kernel mean spectra. A one 
standard deviation envelope is also shown for each grand 
mean spectrum. The broadness of the envelopes alludes 
to a possible difficulty in classifying individual kernels 
based on raw reflectance. The authors’ earlier study 
using diffuse reflectance spectroscopy (1100–2500 nm) 
of ground meal demonstrated the advantage of spectral 
preprocessing to reduce physical effects, especially with 
respect to the wavelength region beyond 2000 nm.15 
Therefore, preprocessing was performed on the current 
study’s HSI data, albeit over the narrower wavelength 
region. With removal of most of the differences attrib-
uted to physical effects (e.g., size, shape, texture), the 
transformed spectra became nearly identical in appear-
ance after successive applications of SNV normalisation 
(Figure 1B) and first derivative transformation (Figure 1C) 
or second derivative transformation (Figure 1D).

The means of the statistical figures of merit for the two 
PLS approaches and the pattern recognition approach 
are summarised in Table 2. For the first PLS approach 
(percentages of weighted classified kernel counts, here-
after called the PLSDA approach), the mean r2 values 
were 0.932, 0.941 and 0.873 for smooth, first deriva-
tive and second derivative preprocesses, respectively. The 
corresponding mean of absolute bias were 5.04%, 4.32% 
and 5.94%, respectively, while SEPs were 10.3%, 9.6% 

and 13.6%, respectively. With the first derivative prepro-
cess demonstrating the best performance among the 
PLSDA models, plots of actual versus predicted mixture 
levels based on this approach are shown in Figure 2A–H, 
with each plot representing a validated pair. Some pairs, 
such as E (SEP = 4.0%), demonstrated close agreement 
between actual and predicted values, while other pairs, 
such as A (SEP = 16.5%) were more difficult to model. In 
general, samples possessing higher conventional fractions 
had larger deviations between measured and modelled 
percentages than samples possessing lower fractions.

The corresponding actual versus predicted plots for 
the second PLS approach (regression on mean spectra, 
hereafter called the PLS1 approach) with first derivative 
preprocessing (again, the best of the three preprocesses) 
are shown in Figure 3A–H. Compared to the PLSDA 
approach, the SEPs among the validation pairs from the 
PLS1 approach were more similar to one another, with the 
best pair B (SEP = 6.4%) and worst pair E (SEP = 11.6%) 
indicating a smaller overall range. As with the PLSDA 
approach, deviations between measured and modelled 
values increased as the conventional percentage 
increased. The disadvantage of the PLS1 approach is 
that through spectral averaging the potential benefit of 
imaging is lost because kernels are not individually classi-
fied and therefore not capable of being sorted.

For the pattern recognition classifier models (Table 
2), two of the classifiers, statslinc and fisherc, with 

Model type
Preprocess or 
 classifiera r2 |Bias| (percentage units) SEP (percentage units)

PLSDA
smooth 0.932 a 5.04 abcd 10.3 a
1st derivative 0.941 a 4.32 abcd 9.6 a
2nd derivative 0.873 bc 5.94 bcde 13.6 b

PLS1
smooth 0.953 a 6.65 de 9.4 a
1st derivative 0.959 a 6.54 cde 9.4 a
2nd derivative 0.952 a 8.19 e 9.5 a

Pattern 
 recognition

statslinc 0.949 a 2.74 a 8.9 a
fisherc 0.946 a 3.33 ab 9.1 a
knnc 0.910 ab 4.90 abcd 17.9 c
dtc 0.921 a 3.61 abc 18.3 c
nmc 0.830 c 5.64 abcde 22.0 d

aSmooth and derivative preprocesses included a preliminary step of a standard normal variate (SNV) transformation.23 A smooth or derivative 
was performed by Savitzky–Golay seven-point convolution using a second order polynomial. Classifier abbreviations: statslinc = stats linear, 
fisherc = Fisher’s linear, knnc = k-nearest neighbour, dtc = decision tree, nmc = nearest mean. 
Within a column, pretreatments are significantly different for letters that are not in common (p < 0.05).

Table 2. Hyperspectral imaging model statistics for validation set. Values are the means of the statistics of eight pairs.
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Figure 2. Actual vs predicted scatter plots of each pair (A–H) as a validation set, based on two-class PLSDA to assign 
kernels into waxy or conventional classes, with calibration (seven-factor, first derivative after SNV) performed using pure 
waxy and pure conventional spectra from the seven other pairs, then counts of classified waxy and conventional kernels in 
validation test samples are tallied and percentages are calculated. Graphs A–H correspond to pairs A–H, respectively.
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Figure 3. Actual vs predicted scatter plots of each pair (A–H) as a validation set, based on PLS1, with calibration (seven-
factor first derivative after SNV) performed on all test samples from the seven other pairs. Graphs A–H correspond to pairs 
A–H, respectively.
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Figure 4. Actual vs predicted scatter plots of each pair (A–H) as a validation set, based on pattern recognition function 
statslinc, with calibration performed using the pure waxy and pure conventional spectra of all kernels from the seven other 
pairs, then counts of classified waxy and conventional kernels in validation test samples are tallied and percentages are 
calculated. Graphs A–H correspond to pairs A–H, respectively.
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 respective SEPs of 8.9% and 9.1%, had performances 
that were similar to the best of the PLSDA and PLS1 
models. However, the other three classifiers (knnc, dtc 
and nmc), with SEPs ranging between 17.9% and 22.0%, 
demonstrated significantly poorer performance. Actual 
versus modelled mixture level plots for the eight pairs 
are shown for the statslinc classifier in Figure 4A–H. 
The plots are closer in appearance to the corresponding 
PLSDA plots in Figure 2 than they are to the ones of the 
PLS1 model in Figure 3. The closer similarity is most likely 
because the PLSDA and pattern recognition approaches 
were based on counts of kernels weighted by their areas, 
as opposed to the PLS1 approach which was based on 
conventional quantitative modelling of mean spectra. 
Although it produced similar results to PLSDA, the 
pattern recognition approach is not readily adaptable to 
spectral interpretation.

Using the calibration set that excluded pair E by 
example, regression vectors for the PLSDA and PLS1 
calibrations are shown in Figure 5. For both approaches, 
preprocessing consisted of SNV followed by a Savitsky–
Golay seven-point smooth. The most striking feature of 
this graph is that the approaches produced different local 
maxima and minima, with wavelengths of 1365, 1404, 
1534 and 1615 nm for the PLSDA model and 1024, 
1081, 1159, 1346, 1418, 1500 and 1610 nm for the 
PLS1 model. Coincidently, the wavelengths with largest 
absolute coefficients for the PLSDA and PLS1 models, 

at 1404 nm and 1418 nm, respectively, fell within the 
range of 1350–1450 nm that the authors had previously 
identified as most important in bulk whole grain analysis 
of conventional and waxy mixtures.15

Calibration and validation sets were purposely struc-
tured to be identical to those of previous research that 
utilised conventional NIR spectroscopy15 to facilitate 
the direct comparison between HSI and the conven-
tional approach. In the current study, a new analysis 
was also performed to determine whether the validation 
statistics were being falsely inflated because of occur-
rences when the waxy parent sample was present in 
both calibration and validation sets. (As shown in Table 
1, pairs A–C had the same waxy parent sample, as did 
pairs F–H.) For the new analysis, calibration and valida-
tion sets were structured so as not to have any parent 
waxy sample common to both, thus potentially affecting 
the validation statistics on six of the original eight pairs. 
The results indicated non-significant differences in the 
PLSDA statistics between the regular and new analyses. 
For example, the mean values for SEP, |Bias| and r2 in the 
new analysis were 9.8%, 3.81% and 0.937, respectively, 
for the 1st derivative preprocess using the same number 
of PLS factors (seven) as the original PLSDA. Likewise, 
non-significant differences in the statistics from the PLS1 
model approach were found between regular and new 
analyses, though fewer factors (five) were needed in the 
new analysis.

Figure 5. Regression vectors for PLSDA and PLS1 models. Models were both seven-factor on SNV followed by Savitsky–
Golay seven-point smoothed spectra.
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Lastly, the photograph of the sample used in ground 
truth verification is displayed in Figure 6. Dark coloured 
kernels, whose darkness arose from amylose reacting 
with iodine to form a blue colour complex, were counted 
to be 205. This is compared to 225 kernels identified as 
conventional by the PLSDA on first-derivative-of-SNV 
model. For the waxy condition, 435 and 402 kernels 
were identified by the visual and HSI methods, respec-
tively. Disagreements between visual and HSI are shown 
as green circles (9 conventional kernels classified as waxy) 
and red circles (40 waxy kernels classified as conven-
tional). The difference in total count between visual and 
HSI analyses, at 13 kernels, was caused by two condi-
tions: the removal during image processing of oversized 
objects arising from touching kernels, thus depressing 
the HSI counts, and, second, a small number of kernels 
lost during the sanding operation (black circles in photo-
graph).

Conclusions
Although spectral differences between conventional 
and waxy wheat are slight, NIR hyperspectral imaging of 
intact kernels may be used to measure mixture levels (w 
conventional / w total), with standard errors typically in 
the range of 9–13 percentage units. PLSDA and statis-
tical pattern recognition approaches produced similar 
error rates. Although model performance was slightly 
less than that achieved by conventional NIR reflectance 
spectroscopy of bulk whole kernels or ground meal, the 
HSI technique offers the potential advantage of being 
adapted to sorting operations.
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