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It is recognised that flame retardant chemicals degrade and leach out of flame-protected wood claddings when exposed to natural weathering. 

However, the ability to survey the current state of a flame retardant treatment applied to a wood cladding, an arbitrary length of time after 

the initial application, is limited today. In this study, hyperspectral imaging in the near infrared to short-wavelength infrared region is used to 

quantify the amount of flame retardant present on wooden surfaces. Several sets of samples were treated with various concentrations of a 

flame retardant chemical and scanned with a push broom hyperspectral camera. An inductively coupled plasma (ICP) spectroscopy analysis of 

the outermost layer of the treated samples was then carried out in order to determine each sample’s phosphorus content, the active ingredient 

in the flame retardant. Spectra from the hyperspectral images were pre-processed with extended multiplicative scatter correction, and the 

phosphorus content was modelled using a partial least squares (PLS) regression model. The PLS regression yielded robust predictions of surface 

phosphorus content with a coefficient of determination, R2, between 0.8 and 0.9 on validation data regardless of whether the flame retardant 

chemical had been applied to the surface of the wood or pressure-impregnated into it. The result from the study indicates that spectral imaging 

around the 2400–2531 nm wavelength region is favourable for quantifying the amount of phosphorus-based flame retardant contained in the 

outermost layer of non-coated wooden claddings. The results also reveal that the uptake of phosphorus-based flame retardant does not occur 

uniformly throughout the wood surface, but is to a larger extent concentrated in the earlywood regions than in the latewood.
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Introduction
Throughout the European building sector wood is strength-
ening its position as a preferred building material in many 
applications.1 This trend is incentivised by the European 
Union’s Europe 2020 targets, which aim to substantially 

decrease the greenhouse gas emissions and increase 
energy-efficiency in the EU by the year 2020, partly by 
promoting the sustainable use of wood in construction.2 
Wood materials used in buildings already benefit from 
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having a low carbon footprint,3 and through increased 
focus on material selection which is fit-for-purpose and 
by facilitating predictable long-term performance, their 
footprint can be reduced even further. However, the 
combustibility of wood can be a challenge when wood 
is used as a construction material. Due to the risk of fire, 
many European countries adopted an outright ban on 
constructing timber buildings taller than two stories for 
a long time. More developed building regulations and an 
increased understanding of fire safety has, however, in 
the last few decades caused many of these bans to be 
lifted. It is now both permitted and often encouraged 
to build multi-story timber buildings in most European 
countries.4 One effective strategy for increasing the fire 
safety of wood-based buildings is to use wood materials 
which prior to assembly in the construction phase, have 
been treated with a phosphorus-based flame retardant 
chemical. In an event of fire, such treatments react by 
producing a char surface which prevents the degradation 
of the wood and delays the point of flashover.

An important fire safety aspect, which currently is largely 
unknown, is how wood materials treated with flame retar-
dant chemicals are affected by natural weathering and 
how the treatment withstands long-term exposure to the 
external climate. It is known that phosphorus, a crucial 
component in many flame retardant treatments, tends to 
leach out over time from the wood it has been impreg-
nated into.5 By weighing a piece of lumber before and after 
it undergoes a chemical treatment to increase its flame 
resistance, it is possible to determine the total uptake of 
flame retardant compound in the wood. To determine the 
amount of chemical which resides in the outermost layer 
of a wood cladding treated with a flame retardant, an arbi-
trary length of time after the initial treatment, is consider-
ably more difficult. Especially if it is to be done in a non-
destructive way. For this reason, the ability to survey and 
inspect the treatment status of existing wooden construc-
tions or stored lumber is severely limited.

In this paper, a new method for quantifying the current 
concentration of flame retardant in the outer layer of 
wood samples using near infrared (NIR) hyperspectral 
imaging is developed and evaluated. NIR spectroscopy 
is widely used for quality control in numerous fields, e.g., 
the food industry,6 and the potential for using NIR spec-
troscopy in the field of wood science has successfully 
been demonstrated in previous studies.7–9 NIR hyper-
spectral imaging has also been applied to wood surfaces 
to determine wood moisture content,10 map chemical 

composition,11 determine wood extractive content,12 
map weathering by UV radiation,13 for identification of 
compression wood14 and for detecting show-through 
resin defects on painted lumber.15

The method proposed in this paper involves mapping 
the NIR absorbance spectrum of a wood sample, by 
means of a linear regression model, to its corresponding 
surface concentration of phosphorus. Phosphorus is 
the active ingredient in many flame retardant chemicals 
and can be seen as proportional to its ability to protect 
the wood against fire. By measuring the NIR spectra 
using hyperspectral imaging, it also becomes possible 
to spatially resolve the absorbance properties of the 
wood, which enables completely non-destructive and 
rapid surveying of large areas of wood such as facades or 
wooden decks.

Method
Sample preparation and signal acquisition
Five boards of Norway spruce (Picea abies), originating 
from different logs, were each cut into seven samples of 
dimension 50 × 50 × 10 mm, giving a total of 35 samples. 
The samples were conditioned in a climate chamber at 
20 °C and 65 % relative humidity until the samples had 
reached equilibrium moisture content. The samples were 
treated with Preventor AntiFlame from Akzo Nobel, which 
is a flame retardant wood coating commonly used in 
the construction industry. According to the Akzo Nobel, 
the undiluted chemical is typically diluted with distilled 
water to reach any desired solution concentration prior 
to applying it to wood, and a concentration of 66 % is 
common when pressure-impregnating the chemical into 
wood. In our study, the Preventor AntiFlame was diluted 
with distilled water into seven different concentrations: 0, 
17, 33, 50, 67, 83 and 100 %. Each of the seven concen-
trations was then used to treat 5 of the 35 samples in a 
manner such that each concentration was represented 
once in each of the original wood logs. This was done to 
ensure that any model developed from the data set had 
the ability to reliably estimate the concentration of flame 
retardant chemical in the wood despite natural variations 
in the physical appearance of samples originating from 
different trees, which could affect their spectrum.

To ensure even and comparable uptake of each solu-
tion, the solutions were poured into petri dishes and each 
sample was immersed in the solution for 30 seconds. In 
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addition to the immersed samples, five samples that were 
industrially pressure-impregnated using the same flame 
retardant chemical at a concentration of 66 % were also 
included in the study to verify that the spectral finger-
print of the flame retardant substance is the same inde-
pendent of treatment method.

A custom plastic sample mount was designed and 
3D-printed, which could accommodate five samples at 
a time in addition to a Spectralon white reference plate 
during image acquisition. The samples were then placed 
inside the plastic mount, illuminated by two halogen 
lights and scanned using a push broom hyperspec-
tral camera (Specim, Oulu, Finland) with 256 bands in 
the 929–2531 nm range, as can be seen illustrated in 
Figure 1.

After signal acquisition, a three-dimensional represen-
tation of the reflective properties of each sample was 
acquired, with spatial width along one dimension, spatial 
height along one dimension and reflected light along the 
third as can be seen illustrated in Figure 2. The spatial 
resolution of each image was 151 × 151 pixels, resulting 
in a pixel dimension of 0.33 mm2.

When the reflective properties of each sample had 
been measured, a 0.4–0.5 mm layer was removed from 
the surface of each sample using a planer, which was 
cleaned with alcohol between every sample to prevent 
cross contamination. The phosphorus content in the 
removed layers was analysed according to the ICP21100 
Thermo Jarell Ash ICP-IRIS HR Duo method.16 The labo-
ratory established surface concentration of phosphorus 
for each sample were used as response values when 
developing the regression model.

The hyperspectral data were divided into a training set 
(5/8 of the data) and a validation set (3/8 of the data). 
The samples treated with concentrations 0, 33, 50, 83 
and 100 % were chosen as training data to be used when 
developing the regression model. Samples treated with 
concentrations of 17 % and 67 %, together with the pres-
sure-impregnated samples, were consequently not used 
in the calibration of the regression model. These samples 
could therefore be used to validate the final model’s 
ability to generalise to new unseen data and estimate 
the phosphorus content of new wood samples. One of 
the five samples treated with 17 % chemical concentra-
tion was, however, later excluded from the validation 
data set since it was found to be covered in resin, which 
severely distorted its spectral properties. Table 1 shows 
a summary of all the samples in the data set and their 
treatment.

Data pre-processing
The signal from each hyperspectral image was first 
recalculated into reflectance, relative to a white refer-
ence, by subtracting the mean value of each pixel row 
in the spatial direction of a dark region (taken with the 
camera shutter closed), and dividing by the mean inten-
sity value of a white calibration plate included in the 
image, also for each pixel row. The reflectance spectra, 
R, were transformed into absorbance, A, using the rela-

Figure 1. Illustration of experimental setup.

Figure 2. Structure of 3-D hypercube of a wood sample 
with NIR reflectance as a function of wavelength and 
spatial position.
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tion A = log10(1/R). All spectra were pre-processed using 
extended multiplicative scatter correction (EMSC), which 
is a pre-processing technique that corrects for unde-
sired physical variations between the samples, such as 
surface geometry causing light scattering effects,17 while 
attempting to retain spectral variations caused by chem-
ical differences between the samples. This is achieved 
by fitting each raw absorbance spectrum using ordinary 
least squares (OLS) fitting to a design matrix containing a 
constant term, a linear term consisting of a vector with all 
wavelengths included in the spectrum, a quadratic term 
containing a squared version of the wavelengths and a 
reference spectrum which is assumed to contain less 
scatter effects than each individual raw spectrum. The 
spectral correction is then carried out using

	
2

1 2 3

4

Raw
Corr

S b b w b wS
b

- - × - ×
= 	 (1)

where b1–4 are the regression coefficients, acquired with 
OLS, corresponding to the consecutive terms in the 
design matrix. w is the vector of wavelengths involved, 
SRaw is the uncorrected spectrum and SCorr is the corrected 
spectrum.

The reference spectrum used during our EMSC was 
set to the average spectrum of all samples within the 
training data set, thereby avoiding information leakage 
between the training and validation data which were 
both processed using the same reference spectrum. 
For a more in-depth description of EMSC, the reader is 
referred to References 17 and 18.

Wavelength selection and PLS regression
Noisy and irrelevant parts of the spectra which were not 
correlated to the phosphorus content in any statistically 
meaningful way were removed by a backwards elimination 
algorithm. In backwards elimination, an initial regression 
model is created using all available variables, which in 
this case corresponds to wavelengths. The model is then 
created again N times, where N is the number of avail-
able wavelengths, with one of the available wavelengths 
inactivated each iteration until all wavelengths have been 
excluded once. The wavelength selection with the lowest 
root mean square error of cross-validation (RMSECV) of 
all the evaluated models then becomes the new start-
case and the process starts over again recursively until 
no single wavelength inactivation can be made that 
improves the RMSECV. The backwards elimination algo-
rithm utilised in this paper is summarised in pseudocode 
in Figure 3. All fitting of regression coefficients was done 
using a C implementation of the Bidiag2 partial least 
squares algorithm proposed in Reference 19, which was 
chosen due to its proven numerical stability and compu-
tational efficiency. The partial least squares (PLS) regres-
sion was configured to consider at most 25 components. 
Since backwards elimination can require several thou-
sand regression models to be fitted before terminating, 
the spatial resolution of the hyperspectral data was 
down-sampled with regional pixel averaging to allow for 

Figure 3. Pseudocode for the backwards elimination 
algorithm used to select relevant wavelengths. Cross-
validation loop omitted for clarity. The variable N symbol-
ises the dynamically changing width of the design matrix 
X.

0 17 33 50 67 83 100 % 66

T1 IM1

T2 IM2

T3 IM3

T4 IM4

T5 IM5

Table 1. Overview of samples included in the study. Maroon-
coloured cells represent samples used as calibration data, 
whilst blue and orange cells indicate immersed, T, and 
pressure-impregnated, IM, samples used to validate the PLS 
model’s performance. The crossed-out cell represents a resin 
covered sample which was excluded from the validation data 
set.
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faster model development into 625 spectra (25 × 25) per 
hypercube.

Results and discussion
Pre-processing
Figure 4 shows the mean spectrum from all samples in the 
data set before (left) and after (right) being processed using 
EMSC. As can be seen to the right in Figure 4, the most 
significant change induced in the spectrum when varying 
the concentration of flame retardant compound appears to 
be in the 1900–2531 nm region. It is also noteworthy that 
the pressure-impregnated samples, which are displayed 
as dashed black lines in Figure 4, exhibit slightly different 
absorbance properties from the immersed samples at 
wavelengths shorter than 1500 nm, which suggests that 
treatment method influences the absorbance properties 
of the sample in certain spectral regions. The absorbance 
difference between immersed and pressure-impregnated 
samples does, however, appear to become much less 
significant in the far-end of the spectrum.

Wavelength selection
The RMSEcv kept decreasing as the backwards elimination 
algorithm ran until only 17 wavelengths remained active. 
As can be seen in Figure 5, illustrating the location of 
these wavelengths, all 17 active wavelengths were found 
in the 2400–2531 nm range. In terms of applying the 
model to the pressure-impregnated samples, the wave-
lengths selected by the backwards elimination algorithm 
seem to be among the most favourable, since the absor-
bance of all wood samples is similar in this wavelength 
region, regardless of treatment method. The number of 

PLS components deemed optimal in the final variable 
selection with respect to RMSECV was one, resulting in 
a model of low complexity. This identified wavelength 
range for determining phosphorus agrees with wave-
length regions which have previously been reported 
in studies of phosphorus content in dried woody plant 
species20 and in soil.21 The latter study in soil phosphorus 
concentration also found large regression coefficient 
values at other wavelengths, including the visible region. 
Gillon et al.22 studied phosphorus content in plant mate-
rial with spectra in the visible (Vis) and NIR regions and 
found that most of the spectral information was found in 
the NIR part of the spectrum. Although optical properties 
in the Vis region of the spectrum were not measured for 
samples in this study, the supposed correlation between 
absorbance in the NIR region and phosphorous content 
agrees with the present findings.

Model performance
Figure 6 shows the phosphorus content from the ICP 
analysis versus the final regression model’s prediction 
of the phosphorus content based on the samples absor-
bance for both the samples within the training data set 
(left) and the validation data set (right). The regression 
model’s RMSE of the phosphorus content of the training 
data was 6055 mg kg–1 with a coefficient of determina-
tion of 0.90. For the validation samples immersed in 17 % 
and 67 % chemical solution, the RMSE was 4297 mg kg–1 
with a coefficient of determination of 0.87. Similar good 
regression results have been obtained when predicting 
phosphorus in soil and ground plant material,21,22 whereas 
no previous study has been found using this technology 
on phosphorus in wooden surfaces.

1500 2000 2500
Wavelength /nm

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Absorbance

1500 2000 2500
Wavelength /nm

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Absorbance

10001000

Figure 4. Mean spectrum of each sample in the dataset before (left) and after (right) being pre-processed using EMSC. Line 
colour indicates phosphorus content in the sample with yellow representing lower concentration and blue higher. Black 
dotted line indicates the spectrum from the pressure-impregnated samples.
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When using the model to predict the phosphorus 
content in the pressure-impregnated samples, the RMSE 
degraded to 24,394 mg kg–1 with a coefficient of deter-
mination of 0.87. However, as can be seen both in the 
right part of Figure 6 and in Table 2 which provides a 
summary of the ICP results for all samples, this apparent 
collapse in RMSE can almost entirely be accredited to 
just one of the five impregnated samples, a sample which 
according to the ICP results supposedly has several times 
the phosphorus content compared to the other impreg-
nated samples. It is unclear why sample IM1 has such 
an abnormally high phosphorous content considering 
that all impregnated samples were treated with the same 

solution. We can only speculate that it could be due to 
an exceptional deviation in sample density, an aggrega-
tion effect caused by an irregular surface curvature or a 
result of too high moisture conditions during storage. If 
the sample causing the RMSE collapse is disregarded as 
an outlier the RMSE of the four remaining impregnated 
samples becomes 8650 mg kg–1, which is more compa-
rable to the immersed samples.

When reviewing the results in Figure 6 it is important 
to realise that, as is often the case in multivariate calibra-
tion with hyperspectral data, only the mean response 
value of each sample is known. Because multiple spectra 
share the same target value, it is therefore inevitable 
for the calibrated model to produce a distribution of 
errors around the target. In the absence of an alterna-
tive measurement technique which can be used to vali-
date the chemical variations within each sample, the 
convention is to arrange the distribution of predicted 
values into two-dimensional images and visually deter-
mine if the in-sample variations display a credible 
pattern or not. Figure 7 shows the regression model’s 
phosphorous prediction of every measured spectra for 
the immersed samples as a function of pixel position, 
arranged into chemical maps, with applied concentration 
of flame retardant increasing in the horizontal direction 
and the different wooden logs in the vertical direction. 
The model generally estimates a higher concentration 
of phosphorus in the earlywood regions than in the 

1000 1500 2000 2500
Wavelength /nm

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Absorbance

Mean spectra
Active wavelengths

Figure 5. Wavelengths selected by backwards elimina-
tion. Blue lines represent wavelengths which were active 
after backwards elimination. The black curve represents 
the mean absorbance spectrum of the training dataset.
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Surface-treated validation data
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Figure 6. Regression plot of actual vs predicted phosphorus content for the training data (left) and 
the validation data (right). Each dot corresponds to one of the 25 × 25 spectra from the down-
sampled hypercubes.
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latewood regions. This makes intuitive sense, since the 
earlywood regions of Norway Spruce have lower density 
and are more susceptible to absorbing liquids, but this 
is a phenomenon which, to the authors' knowledge, has 
never been demonstrated before with flame retardant 

treatments. Thumm et al. have previously demonstrated 
that resin affects the spectral signature of wood around 
the 1180 nm and 1370 nm regions.15 As can be seen on 
sample T1 17 % in Figure 7, which depicts the modelled 
phosphorous of the resin covered sample, it is clear that 

Conc.
Sample 0 % 17 % 33 % 50 % 67 % 83 % 100 %

Conc.
Sample 66 %

T1 87 3207 7941 10,592 14,575 16,081 31,014 IM1 91,188
T2 72 5524 10,730 20,141 23,793 18,533 41,603 IM2 24,769
T3 90 6632 14,586 19,715 26,643 33,177 45,600 IM3 32,871
T4 20 6436 13,714 21,414 20,532 28,516 42,888 IM4 32,542
T5 80 6724 17,392 26,249 17,749 37,730 22,169 IM5 28,314

µ 70 5705 12,872 19,622 20,658 26,807 36,655 µ 41,937
σ 29 1475 3639 5678 4773 9305 9811 σ 27,733

Table 2. Phosphorous concentration established by ICP for all samples together with mean, μ, and standard deviation, σ, across 
replicates. All values are in the unit mg kg–1.

T1

T2

T3

T4

T5

0 % 17 % 33 % 50 % 67 % 83 % 100 %

10
40 1 2 3 4 5 6 7

Predicted phosphorus content /(mg·kg⁻¹)

Figure 7. Prediction of phosphorus content for every immersed sample in the data set. Sample T1 17 % illustrates 
the outlier sample covered in resin which was not considered when evaluating the performace of the model.
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resin also alters the spectra in the 2400–2531 nm range, 
which in this case causes a local misclassification of phos-
phorous. If the spectral signature of resin was studied 
further it is possible that a different wavelength subset 
could be identified which would allow a model to accu-
rately predict phosphorous whilst being unaffected by 
the presence of resin.

Figure 8 shows the chemical maps for the pressure-
impregnated samples. As can clearly be seen in Figure 8, 
the model does estimate, in accordance with the ICP anal-
ysis, that one of the pressure-impregnated samples has a 
substantially higher surface concentration of phosphorus 
than the others. The precise quantity of phosphorus 
reported by the ICP analysis and the regression model 
does however differ substantially as shown in Figure 6. 
If indeed the phosphorus concentration reported by the 
ICP analysis for this sample is valid, it is not surprising that 
the regression model struggles in its estimation since it 
has a response value far higher than anything used in the 
calibration of the model. 

Conclusions
We demonstrated that NIR hyperspectral imaging together 
with PLS regression can be used as a novel non-destruc-
tive tool for surveying the current condition of phos-
phorus-based flame retardant chemical compounds, both 
surface-applied and pressure-impregnated into, samples 
of Norway spruce. In most cases our model was able to 
predict the phosphorus content in wood surfaces with a 
high degree of accuracy with an R2 of 0.87 on independent 
validation samples. However, since the method works 
by measuring how light is reflected off the surface, it is 
vulnerable to surface defects, such as resin stains, which 
locally conceals the true physical properties of the wood 

surface and can cause misleading phosphorus estimates. 
When using the model to estimate the spatial distribution 
of phosphorus in our samples, the chemical uptake does 
not occur entirely evenly throughout the wood. Instead, 
the highest concentration of phosphorus was generally 
found in the earlywood regions of the surfaces.

We identified that 2400–2531 nm appears to be a key 
wavelength region when it comes to estimating phos-
phorus. Since this region was at the limit of what our 
instrument could measure, further studies should inves-
tigate the possibility of estimating phosphorus using an 
instrument capable of detecting longer wavelengths into 
the infrared region.
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