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Nowadays, quality inspection of fruit and vegetables is typically accomplished through visual inspection. Automation of this inspection is desirable 

to make it more objective. For this, hyperspectral imaging has been identified as a promising technique. When the field of view includes multi-

ple objects, hypercubes should be segmented to assign individual pixels to different objects. Unsupervised and supervised methods have been 

proposed. While the latter are labour intensive as they require masking of the training images, the former are too computationally intensive for 

in-line use and may provide different results for different hypercubes. Therefore, a semi-supervised method is proposed to train a computationally 

efficient segmentation algorithm with minimal human interaction. As a first step, an unsupervised classification model is used to cluster spectra in 

similar groups. In the second step, a pixel selection algorithm applied to the output of the unsupervised classification is used to build a supervised 

model which is fast enough for in-line use. To evaluate this approach, it is applied to hypercubes of vine tomatoes and table grapes. After first 

derivative spectral preprocessing to remove intensity variation due to curvature and gloss effects, the unsupervised models segmented 86.11% 

of the vine tomato images correctly. Considering overall accuracy, sensitivity, specificity and time needed to segment one hypercube, partial least 

squares discriminant analysis (PLS-DA) was found to be the best choice for in-line use, when using one training image. By adding a second image, 

the segmentation results improved considerably, yielding an overall accuracy of 96.95% for segmentation of vine tomatoes and 98.52% for seg-

mentation of table grapes, demonstrating the added value of the learning phase in the algorithm.
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Introduction
In spectral hypercubes of agrofood products multiple 
classes are often present. To acquire quality properties 

from these classes, a calibration method to extract the 
quality properties of interest has to be built.1 When 
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multiple objects are present in an image, the pixels which 
have similar properties should be allocated to the corre-
sponding objects,2 to enable the building of prediction 
models.
The segmentation of hyperspectral images can either 
be done manually or automatically.3 As manual segmen-
tation is time-consuming, tedious and subjective, it is 
not suitable for industrial applications. Therefore, auto-
matic segmentation is preferred. Many techniques have 
been proposed for this, which can be divided into three 
groups:4 segmentation in the spatial domain, segmenta-
tion in the spectral domain and segmentation combining 
spatial and spectral information. Segmentation in 
the spatial domain involves the clustering of spatially 
connected pixels of similar intensity by algorithms like 
region growing5 and watershed transformation.4 These 
algorithms are either applied to images at a single wave-
length with maximal contrast between the different 
objects to be segmented, or virtual images which are 
calculated by combining images at different wavelengths 
to obtain maximal contrast.

Segmentation in the spectral domain ignores the 
spatial position of the pixel spectra in the image and 
only looks at the similarity of the pixel spectra. For this 
purpose, the information from multiple wavelengths is 
combined to obtain a good classification. For example, 
ElMasry et al.6 subtracted images at different wave-
lengths to classify meat, fat and background. Baranowski 
et al.7 used different supervised classification methods, 
such as support vector machines (SVM), functional trees, 
nearest-neighbour classifiers and regression methods, to 
distinguish bruised apple tissue from sound tissue and 
found that logistic regression gave the best classifica-
tion results with a correct classification rate of 98.8%. 
Lü et al.8 applied SVM on hyperspectral data from kiwi-
fruit to detect bruises with a misclassification rate of 
12.5%. Partial least squares discriminant analysis (PLS-
DA), a supervised classification method based on partial 
least squares regression (PLSR),9 was used to classify 
undamaged, mechanically damaged and microbiological 
diseased mushrooms with a correct classification rate 
of more than 95%10 and to classify hazelnuts into four 
quality classes with more than 90% accuracy.11 Nguyen 
Do Trong et al.12 applied PLS-DA to discriminate between 
cooked and raw pixels in potatoes with a classification 
accuracy of 95.82% for raw pixels and 97.91% for fully 
cooked pixels. Keresztes et al.13 detected bruises on 
apples using PLS-DA with an accuracy of 96.25%.

An example of a segmentation algorithm combining 
both spectral and spatial information was described 
by Lee et al.14 They first applied PLS-DA to distinguish 
the spectra from cracked tomato tissue, sound tomato 
tissue and zones with specular reflection. Afterwards, 
the images were processed by conducting image filling, 
followed by a labelling of connected classes. Only the 
largest classes were preserved. Then, they applied linear 
discriminant analysis (LDA) and SVM on two morpho-
logical parameters quantifying the shape of the stem/
scar region, namely roundness and minimum–maximum 
distance from the centre of the class, which were derived 
from the binary image. This resulted in a correct clas-
sification rate of 94.6% for LDA and 96.4% for SVMs, 
respectively.14 Zhu et al.15 used spectral characteristics 
in combination with textural variables, extracted by using 
a grey-level co-occurrence matrix, of fresh fish fillets and 
fish fillets that were frozen–thawed as input for a least-
squares SVM, resulting in a correct classification rate of 
97.22%. Portalés and Ribes-Gómez16 developed a system 
based on camera vision, which was sensitive to light in 
the near infrared (1000–1100 nm). It was able to distin-
guish grapes from stalks and leaves in harvest batches. In 
a first step, they distinguished grapes from bright spots, 
stems and leaves using thresholds. In a second step, they 
analysed the shape of parts of an image with comparable 
properties to distinguish stalks from other, unidentified 
objects. They achieved minimal root mean squared error 
(RMSE) values of 0.34% and 0.08% for classification of 
pixels as stalk or unidentified object, respectively.

As the building of multivariate calibration models 
for segmentation in the spectral domain is tedious 
and requires specific expertise, the use of a learning 
method is very appealing. In machine learning, three 
different learning methods are distinguished: unsuper-
vised learning, supervised learning and semi-supervised 
learning. Unsupervised learning does not require a 
training set of labelled spectra as these methods group 
the spectra based on a similarity metric.17 Examples of 
unsupervised learning techniques are k-means clustering 
and hierarchical clustering. The disadvantage of these 
techniques is that they are computationally very inten-
sive and consequently still require too much computa-
tion time to be suitable for inline use. These techniques 
also search for groupings in the dataset, but the groups 
found are not necessarily in accordance with the classes 
of interest. In supervised learning, the unlabelled data are 
given to an expert who analyses them and who divides 
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the data in the different classes present (labelling). Then, 
the labelled data are sent to a learner. This learner then 
builds a classifier, based on the labelled data, which is 
capable of classifying new data. Examples of super-
vised learning methods, such as SVM and PLS-DA, were 
presented in the previous paragraph. The execution of 
such methods is much faster than for the unsupervised 
methods, but a good training set is required to build the 
segmentation models. To acquire such a training set, a 
series of training images have to be segmented manu-
ally. As misclassifications in the training set would have a 
negative impact on the segmentation model trained on it, 
this manual segmentation should be done very carefully 
by an expert for a sufficiently large number of images. 
This makes it a time-consuming and expensive approach.
To overcome the above-mentioned limitations of unsu-

pervised and supervised learning methods, semi-super-
vised learning methods have been proposed as a strategy 
in-between supervised and unsupervised learning. Their 
aim is to obtain a good learning performance without the 
need for a large training set of manually labelled data, by 
using labelled as well as unlabelled data to train a clas-
sifier with a higher accuracy than classical supervised 
classification.18 It is a useful technique when there are 
far more unlabelled data available than labelled data. 
This strategy is commonly used in hyperspectral remote 
sensing,19–22 but to our knowledge it has not yet been 
applied in hyperspectral imaging for food quality assess-
ment. Therefore, its potential for segmentation of hyper-
cubes of vine tomatoes and table grapes has been inves-
tigated in this study.

The aim of this study was to develop a learning algo-
rithm capable of building a classification model requiring 
little human interaction, which is flexible, but not time 
consuming, thus making it possible to cope with different 
products. Taking into account the added value of semi-
supervised classification over unsupervised and super-
vised classification, the efficiency of this technique to 
segment hyperspectral images of food products has been 
investigated. As vine tomatoes (Solanum lycopersicum) 
consist of multiple fruits attached to a stalk, and the 
colour of tomatoes changes significantly during ripening, 
going from green to red, this is an ideal case to evaluate 
the performance and robustness of the newly developed 
segmentation method. To show the flexibility of the algo-
rithm, it is also tested for the segmentation of spectral 
hypercubes of green table grapes (Vitis vinifera), where 
the stalk and flesh, that are comparable in terms of colour, 

have to be segmented from the background and from 
each other.

Materials and methods
Algorithm
The goal of the developed algorithm is to train a super-
vised classifier in an intuitive way, without the need for 
time-consuming manual labelling of the hypercubes 
by an expert. The training of a supervised classifier is 
preferred over an unsupervised approach, as unsuper-
vised classifiers are too computationally intensive to be 
applied inline, may provide variable results and provide 
no information on the nature of the different classes. 
The developed algorithm aims to segment good quality 
products and can be split into three important parts, 
being the unsupervised classification, the combination 
of a pixel selection method with a supervised classifica-
tion algorithm based on those selected pixels and the 
training of the model. In Figure 1, the proposed classifi-
cation algorithm is schematically summarised. After the 
measurement of a product, an unsupervised classifica-
tion algorithm is started that will look for a number of 
classes in the dataset. In the cases described here, three 
classes are defined, namely the background, the stalk and 
the tomatoes or the grapes. As multiple unsupervised 
techniques are tested, an operator has to decide which 
classification performed best and could be used to build 
a supervised classifier. If no unsupervised classification 
has provided a satisfactory segmentation according to 
the operator, this step is repeated looking for an extra 

Figure 1. Schematic illustration of the different steps 
in the classification algorithm. The algorithm consists 
of three important parts, the unsupervised classifica-
tion, the building of the supervised classification model 
and the evaluation of the model on new hypercubes, 
followed by a model update if necessary.
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class in the data. Once a good segmentation has been 
achieved, a specified number of pixels is selected auto-
matically for each class and used to build the super-
vised classification model. This model is then tested on a 
new spectral hypercube acquired for a similar product. If 
the segmentation for this new spectral hypercube is not 
satisfactory to the operator, the algorithm is repeated 
and the selected pixels of this new product are added 
to the training set to build the supervised classification 
model. This is repeated 10 or more times to evaluate its 
performance. If the segmentation is considered adequate 
for a sufficiently large number of subsequent products 
(e.g. 10), the algorithm is considered robust enough for 
in-line use.

Spectral pre-processing
Preprocessing is a very important step in the processing 
of hyperspectral data, as it aims to remove the effect 
of physical phenomena like light scattering from the 
spectra.23 That is why the effect of four different prepro-
cessing methods on the segmentation results has been 
tested. As a standard, the use of the reflectance spectra 
(R) without the application of preprocessing techniques 
is investigated. The second investigated method is the 
use of the Lambert–Beer law to linearise the spectra, 
suggesting a linear relationship between the absorbance 
(A_a) values and the concentration of the absorbing 
constituents. A_a is calculated by using the formula: 
A_a = log(1/R).23 The use of scatter correction by taking 
the first derivative of R is the third investigated technique. 
Savitzky–Golay filtering24 is applied using a total window 
size of 15 points and a second order polynomial. The 
weighting of spectra by means of SNV,25 is the last inves-
tigated technique. This technique performs a normalisa-
tion of each sample over all variables.

Unsupervised pixel classification
To find the most interesting unsupervised classification 
method, eight different methods were tested. These 
methods can be divided into four groups, namely
a)	 agglomerative hierarchical clustering in a one-step (1) 

and a two-step procedure (2),
b)	k-means clustering in a one-step (3) and a two-step (4) 

procedure,
c)	multivariate Gaussian mixture models in a one-step (5) 

and a two-step (6) procedure and
d)	a combination of two of the preceding methods, 
namely combination of (b) and (a) (7), and (b) and (c) (8).

Agglomerative hierarchical clustering (a) is a technique 
that starts by assigning every individual pixel to a different 
class. Next, at each step of the algorithm, the closest pair 
of classes is merged until only a pre-defined number of 
classes are left.17 To decide on the similarity between 
different classes, Ward’s method has been used, which 
aims at minimising the within-class sums of squares.26 
This technique has been applied to the collection of all 
principal components of the pixel spectra that capture 
at least 1% of the total variance present in the dataset. 
In the agglomerative hierarchical clustering group, two 
methods were evaluated: (1) agglomerative hierarchical 
clustering and (2) agglomerative hierarchical clustering 
in two steps. In the two-step algorithm, the first step 
consists of the division of the image into two classes 
based on agglomerative hierarchical clustering, while the 
second step splits the foreground, assigned by human 
intervention, in the pre-defined number of classes based 
on a second agglomerative hierarchical clustering.

The second group consists of a one-step and a two-step 
k-means clustering approach (b). k-means clustering is an 
iterative method searching for k cluster centres, µ1, µ2, …, 
µk, with kc the number of classes looked for. The starting 
µi is chosen based on the k-means++ algorithm. μ1 is 
randomly chosen from the data. Afterwards, each subse-
quent μi is chosen with its probability proportional to 
the squared distance from the already calculated nearest 
cluster centres.27 Then, every pixel is classified according 
to the nearest µi, using the squared Euclidean distance as 
a distance measure. When all the pixels are classified, the 
mean of each cluster is recalculated. This is repeated until 
there is no further change in µi, or until 100 iterations 
have been performed.28,17 As for agglomerative hierar-
chical clustering, the one-step and the two-step k-means 
clustering approaches were applied on the score values 
of the principal components of the pixel spectra that 
capture at least 1% of the total variance present in the 
dataset. The k-means algorithm was repeated four times 
with new starting µi’s to avoid solutions positioned in 
local minima.

The third group involves the use of multivariate 
Gaussian mixture models (GMM) in a one-step procedure 
and a two-step procedure (a). A Gaussian mixture model 
is a probability density function that consists of a linear 
combination of different Gaussian distributions. GMMs 
search for the different Gaussian distributions present in a 
dataset. The basis of GMM is the expectation–maximisa-
tion (EM) algorithm. This is an iterative process consisting 
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of two steps. In a first step, the algorithm makes an initial 
guess on the parameters that are used to describe the 
number of classes using separate Gaussian distributions. 
Based on these distributions, the posterior probability of 
each data point to belong to a certain group is calculated 
(E-step). The second step consists of a recalculation of 
the parameters describing the Gaussian distributions 
based on these posterior probabilities (M-step). These 
steps are repeated until convergence.29 This technique 
was applied on the preprocessed spectra, because it has 
been reported that replacement of the original, corre-
lated variables by PC scores can destroy the underlying 
multimodal structure and make application of GMM inef-
fective.30

The last group involves combinations of methods from 
two groups (d), namely the use of k-means clustering to 
distinguish the background from the foreground as step 
1 and the use of a multivariate Gaussian mixture model 
or a hierarchical clustering in step 2. In this fourth group, 
the same settings have been chosen for the individual 
methods as in the first three groups.

Pixel selection and supervised classification
As each spectral hypercube contains a spectrum for 
each pixel in the image, there is a very large number of 
spectra available for building the classification models. 
This makes training of the supervised classification 
models on all available pixel spectra computationally 
very intensive. Moreover, pixel spectra corresponding 
to the same object are much more similar than those 
belonging to different objects. Therefore, careful selec-
tion of the training spectra is essential to obtain a robust 
and accurate classifier. In this study, two-pixel selection 
methods have been tested for this purpose: random 
and Kennard–Stone pixel selection.31 The effect of the 
number of selected pixels has been investigated as well. 
The number of selected pixels per class was chosen based 
on a Fibonacci sequence with 5 as the starting number 
and 987 as the maximum number of selected pixels per 
class. Each selection was repeated five times to minimise 
the effects of the random sampling.
The subsets of pixels and corresponding spectra that 

were selected by these methods were then used to train 
the supervised classification methods. In this study, five 
methods for supervised classification were tested. The 
first is the use of a convex hull to constrain the space. 
A convex hull is the smallest collection of the convex 
sets containing the points of the particular class.32 To 

calculate the convex hull, a PCA model based on all 
the selected pixels was built first. This model was then 
applied on each class and the scores of each pixel in the 
selection were used to calculate the convex hull, defining 
the boundaries of each class in the two-dimensional 
space spanned by the first two principal components. For 
every new image, each pixel will be assigned to a specific 
class, or to no class, dependent on the position of the 
pixel in the space. The second supervised technique 
was PLS-DA, using three latent variables and the third 
used technique was SVM. The principal components 
explaining at least 1% of the total variation present in the 
dataset containing the selected pixels were selected as 
input variables for the SVM. For each class, a binary SVM 
classifier using a Gaussian kernel was built to discriminate 
the pixels belonging to that class from those belonging to 
the other classes. The fourth investigated technique was 
soft independent modelling of class analogies (SIMCA), 
which is a technique that performs a PCA analysis on 
the selected pixels of each class. For each new spectrum 
the algorithm calculates a distance measure to deter-
mine how likely it is that this sample belongs to that 
class. This sample is then assigned to the class for which 
the likeliness is the largest.33 The first three principal 
components for each class were used, as these effec-
tively explained the larger part of the variance in the 
different classes. A combination of a reduced Hotelling’s 
T2 T2

red (T2 divided by its 95% confidence limit T2
0.95) and 

reduced Q-residual Qred (Q divided by its 95% confidence 
limit Q0.95) was used as distance measure (Equation 1). 
The Q-statistic is a measure for the distance between 
the sample and its projection on the model hyperplane, 
while the Hotelling’s T² describes the distance between 
this projection on the model hyperplane and the centre 
of the model hyperplane.

	
2 22

2 2 2
2
0.95 0.95

  red red
T QD T Q

T Q

æ ö æ ö÷ ÷ç ç÷ ÷= + = +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
	 (1)

The last investigated technique is multinomial logistic 
regression, which is a technique that, opposed to discrim-
inant analysis, assumes a multinomial distribution of the 
dependent variables26 instead of a multivariate normal 
distribution.34

The performance of these algorithms was compared in 
terms of the classification accuracy, the time needed to 
segment one image and the number of selected pixels 
for each pixel selection method. The classification accu-
racy was quantified by calculating three different metrics, 
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using the unsupervised segmentation results as ground-
truth: the accuracy (OA)35 (Equation 2), the sensitivity 
(Equation 3) and the specificity (Equation 4): 

	  TP TNOA
TP TN FP FN

+
=

+ + +
	 (2)

	 Sensitivity  TP
TP FN

=
+

	 (3)

	 Specificity  TN
TN FP

=
+

	 (4) 

where TP are the true positives, TN the true negatives, 
FN the false negatives and FP the false positives. True 
positives are pixels that are correctly classified in the 
corresponding class, true negatives are pixels that are 
legitimately classified as not belonging to the respec-
tive class. False negatives are pixels classified outside 
the class, but that are in fact part of the class and false 
positives are pixels classified wrongly as belonging to the 
class.

The supervised classification models that are built 
during the training phase are tested on five new spectral 
hypercubes, forming the validation set. Per number of 
pixels to select, five different training sets are selected. 
These are used to train the supervised classification 
models. By applying these different supervised models 
to the validation set, the mean OA can be plotted against 
the number of selected pixels. Next, a straight line is 
plotted through the mean OA when using five pixels per 
class and the mean OA using 987 pixels per class. The 
number of pixels where the distance between this line 
and the mean OA is the largest is selected based on the 
technique proposed by Zack et al.36 as the best trade-
off between training efficiency and classification perfor-
mance. The number of selected pixels should be low 
to avoid using many similar pixels in the training phase. 
Using mainly pixels from, for example, the centre of the 
tomato, decreases the influence of pixels at the border, 
introducing mistakes during classification. As the number 
of selected pixels is not identical for each spectral hyper-
cube in the validation set, the number of pixels that is 
finally chosen is the number of selected pixels for the five 
spectral hypercubes that is most common. The computa-
tion time required to apply a supervised classification 
model in the validation phase on a spectral hypercube 
which has not been used for training the model was also 
determined, enabling a relative comparison between the 
times needed for the different classification algorithms. 

This is an indication for the relative time lag that these 
algorithms would introduce in a food processing line.

Augmentation of the training set
The last step of the algorithm is the augmentation of the 
training set. When the above algorithm has been applied 
on one spectral hypercube, the developed supervised 
classification model will be tested on at least 10 new 
spectral hypercubes to see if the algorithm works well. 
The segmentation result for each of these spectral hyper-
cubes is visually inspected by the operator to detect 
unsuccessful segmentations. When a poor segmenta-
tion has been detected, the procedure, starting from 
the unsupervised classification, is repeated for this 
particular spectral hypercube. After selection of the most 
successful segmentation from the unsupervised stage, 
the same number of pixel spectra as in the first used 
spectral hypercube is selected. This selection is inde-
pendent from the existing training set, to ensure that 
information present in this training set is not lost. It is 
used to augment the training set and to build a new 
supervised classifier on this set. This is repeated until 10 
consecutive spectral hypercubes have been tested and 
their segmentation is approved. In this way, the training 
set will cover information from a large variety of samples.

Implementation
All calculations have been carried out using Matlab 
(version 8.4.0, The Mathworks Inc., Natick, MI, USA). 
For the spectral preprocessing, unsupervised segmen-
tation and supervised segmentation the PLS Toolbox 
(version 8.0, Eigenvector Research Inc., Manson, WA, 
USA) was used, while the convex hull was calculated 
using a standard Matlab function. For SVM and logistic 
regression the statistics and machine learning toolbox in 
Matlab was used.

Hyperspectral data
Samples
Vine tomatoes (Solanum lycopersicum) were harvested 
manually at two different Belgian greenhouses. In June 
2014, 36 vines of the cultivar ‘Merlice’ were harvested at 
“Proefstation voor de groenteteelt” (Sint-Katelijne-Waver, 
Belgium), while in August 2014, 36 vines of the cultivar 
‘Prunus’ were harvested at “Proefcentrum Hoogstraten” 
(Hoogstraten, Belgium). During each harvest period 
tomatoes were harvested in three different ripeness 
stages, namely unripe, commercial harvest and overripe. 



J. van Roy et al., J. Spectral Imaging 7, a7 (2018)	 7

Each ripeness stage was divided into four groups and 
each group was measured at a different day, to obtain a 
dataset with large variability. Group 1 was measured at 
day 0 (= day of harvest), group 2 at day 3, group 3 at day 
7 and group 4 at day 10. After each measurement, the 
colour of each tomato on the vine was measured using a 
spectrophotometer calibrated for colour measurements 
(CM-2600d, Konica Minolta, Osaka, Japan). Between 
harvest and the time of measurement the tomatoes were 
stored at a constant temperature of 18°C and a relative 
humidity of 80%.

To evaluate the general applicability of the algorithm it 
was also tested on green table grapes. Five vines of the 
cultivar ‘Sundance Seedless’ and five vines of the cultivar 
‘Thompson Seedless’ were purchased in a local super-
market and measured on the day of purchase.

Hyperspectral data acquisition
The hyperspectral setup used in this research is a line-
scan imaging system that consists of an illumination unit, 
a spectrograph, a lens and a CCD camera. The setup was 
developed to be applicable in an industrial environment, 
requiring a compact and hygienic design. This meant 
that dome illumination was not acceptable. Based on 
ray-tracing simulations, an illumination setup was opti-
mised to obtain a uniform illumination.13 The illumina-
tion unit consists of four DC-halogen lamps (Decostar 
Alu 35, OSRAM, Munich, Germany) each with a diffuser 
(TSG-LEGB, Knight Optical Ltd, Kent, United Kingdom) 
mounted in front of them and positioned in an arc shape 
around the linear translation stage (Franke GmbH, Aalen, 
Germany). The DC-halogen lamps were chosen to avoid 
interference effects in the acquired hypercubes of the 

flickering at 100 Hz which is typical for AC lamps. An 
Imspector V10 spectrograph (Spectral Imaging Ltd, 
Oulu, Finland) was coupled to a Vis/NIR lens (CM120 
BK15 COMPACT, Schneider Kreuznach, Bad Kreuznach, 
Germany) with a focal length of 17 mm. This combination 
was mounted on a 12-bit monochrome CCD camera 
(TXG14NIR, Baumer, Frauenfeld, Switzerland) with a 
resolution of 1392 × 1040 pixels and a spectral sensitivity 
between 325 nm and 985 nm and placed above the linear 
translation stage which has a step resolution of 6 μm 
(Figure 2). By placing a piece of conveyor belt on top of 
the translation stage, a conveyor belt was imitated. This 
setup was placed in a dark room to avoid interference 
from external light sources.
A PC (Intel® Core™ i5, CPU: 2.8 GHz, RAM: 6 GB), 

running Labview (version 9.0, National Instruments 
Corporation, Austin, USA), was used to control the linear 
translation stage and the camera. The samples were 
measured by placing the tomatoes on the translation 
stage. This translation stage was moved with a step size 
of 0.2 mm under the camera, and each step, a line scan 
image was captured. The step size was set to 0.2 mm to 
get a comparable resolution in the x- and y-directions. 
The exposure time of the camera was optimised for the 
measurements of the tomatoes, by measuring vines of 
different ripeness with a range of exposure times. The 
exposure time was set at a value that was as high as 
possible without getting saturated regions in the image, 
resulting in an exposure time of 35 ms. The Labview 
program saved each line scan image. At the beginning 
of each session of hyperspectral measurements a white 
reference and the dark current of the camera were meas-
ured. The white reference was measured using a diffuse 

Figure 2. Illustration of the hyperspec-
tral setup with indication of the main 
components.
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Spectralon plate with a reflectivity of 99% (Labsphere, 
North Sutton, USA), while the dark current of the camera 
was measured by covering the lens of the camera with 
its lens cap.

The table grapes were measured with the same setup 
as the vine tomatoes, with the same settings except for 
the exposure time, which was set to 15 ms. The white 
reference and the dark current of the camera were meas-
ured in the same way as in the case of the vine tomatoes.

Data processing and analysis
The acquired line scan images were loaded into Matlab 
(version 8.4.0, The Mathworks Inc., Natick, MI, USA) and a 
spectral hypercube was built per sample. A binning-factor 
of four was used as well in the spatial (x- and y-direction) 
as the spectral direction, resulting in square pixels with a 
spatial resolution of 0.8 mm and a spectral resolution of 
2.56 nm for both the vine tomatoes and the table grapes. 
The relative reflectance (R) for each pixel was calculated 
as described by Wallays et al.37   (Equation 5). The wave-
lengths with a low signal-to-noise ratio were removed, 
thus reducing the spectra to the 425–985 nm range.

	  

 

 sample dark current

reference dark current

I I
R

I I
-

=
-

	 (5)

with Isample, Ireference and Idark current the measured intensity for 
the sample at a given pixel, the mean of the measured 
intensity of the white reference and the mean of the 
measured intensity of the dark current of the camera.

Results and discussion
Vine tomatoes
Variation in ripeness stages
In Table 1, an overview is given of the hue values which 
were measured for the tomatoes with the spectropho-

tometer calibrated for colour measurements. It can be 
seen that the dataset included a wide range of tomato 
colours with hue values between 42.39° and 83.01°. 
When the tomatoes were measured 10 days after harvest, 
the variation between the different ripeness stages at 
harvest had reduced considerably, as most fruits had 
become fully ripe. This large variation in fruit colours 
poses a challenge for the segmentation algorithm as 
there will be large variability within the class of tomato 
objects to be segmented.

Effect of preprocessing on pixel spectra
In Figure 3, the mean spectra ± one standard devi-
ation of a manually selected part of the background, 
the stalk and unripe, commercially harvested and over-
ripe tomatoes are shown. The mean spectrum of the 
background is very different from the mean spectra of 
the biological materials. As the background has a dark 
blue colour, the background has a very low R in the 
complete measured wavelength range, while there is a 
clear signature present in the tomatoes and the stalk. 
When inspecting the raw spectra in sub-figure a, the 
mean spectra of the unripe tomato and the stalk show a 
very clear dip around 680 nm which can be attributed to 
the absorption by chlorophyll.38,39 During ripening, the 
reflectance R at this wavelength rises, due to the degra-
dation of the chlorophyll. The tomatoes also strongly 
absorb the blue light, because of the strong presence of 
carotenoids, especially lycopene.40 The rise in lycopene, 
with three main absorption peaks at 446 nm, 471 nm 
and 505 nm, during ripening can be seen in Figure 3b, 
where the absorption of blue light is higher in commer-
cially harvested tomatoes and overripe tomatoes 
compared to unripe tomatoes. The difference between 
the commercially harvested tomatoes and the overripe 
tomatoes is small in this wavelength region, suggesting 
that the production of lycopene occurs until the last 

‘Merlice’ ‘Prunus’
1 2 3 1 2 3

Day 0 81.20 59.35 48.95 83.01 60.35 46.09
Day 3 60.01 51.81 46.98 61.84 50.78 44.42
Day 7 48.59 47.50 44.10 57.22 44.87 45.81
Day 10 45.92 45.06 43.17 55.13 42.59 42.39

Table 1. Summary of the average hue (°) values as measured with the calibrated spectrophotometer on different days after 
harvest for the tomatoes harvested at different ripeness stages (1: Unripe harvest, 2: Commercial harvest, 3: Harvest after the 
commercial harvest period).
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ripening stages of the tomato, which is in agreement 
with the observation of Arias et al.41

Unsupervised segmentation
As step 1 of the developed algorithm consists of the 
use of an unsupervised method to segment the spec-
tral hypercubes, different combinations of unsuper-
vised algorithms and typical spectral preprocessing 
techniques have been tested. To accurately segment 
the spectral hypercubes in tomato, stalk and back-
ground, a good distinction between the different 
classes is required. As can be seen from Figure 3a, the 
difference between the stalk and the tomato spectra 
is not as clear as that between tomato or stalk and 
background. This makes it challenging to accurately 
classify the pixels in an image as either stalk or tomato. 
To increase the contrast between the different classes, 
different preprocessing techniques were investigated. 
The use of a linearisation technique (Figure 3b), by 
using log(1/R), does not provide a better distinction. 
However, first derivative and SNV preprocessing 
result in an enhancement of the differences between 
the classes (Figure 3c and Figure 3d), which can be 
explained by the fact that both techniques are able 
to correct for variation in the spectra caused by 
differences in the scatter properties.23 In Table 2, the 
segmentation performances are summarised for the 
different combinations of pre-processing techniques 
and unsupervised classification algorithms.

The results in Table 2 show that the preprocessing 
technique used has a large impact on the segmentation 
performance. As expected from Figure 3, the segmenta-
tion results for the reflectance and pseudo-absorbance 
[Log(1/R)] spectra are poor with only 8.33% and 0% of the 
total number of images correctly segmented. When using 
the pseudo-absorbance as a preprocessing step to clas-
sify the pixels in the spectral hypercubes, the background 
was often segmented into shadow and non-shadow 
parts. The results obtained with SNV preprocessing are 
better, but still rather poor with a cumulated segmenta-
tion accuracy of 26.39% over all unsupervised classifi-
cation methods. First derivative preprocessing over an 
interval of 15 wavelength variables, which corresponds 
to a range of 38.4 nm, is much more successful with a 
correct segmentation rate of 86.11% over all methods. 
This better performance can probably be explained by 
the fact that the first derivative enhances the curva-
ture in the spectra caused by absorption by chemical 
components, while reducing the influence of the baseline, 
resulting from differences in light scattering. In this way, 
the spectral differences between the different classes are 
increased with respect to the variation within each class, 
as can be seen from Figure 3c. In Figure 4, the segmented 
images obtained with the different unsupervised clas-
sification algorithms on the first derivative preprocessed 
spectra are illustrated for one truss of tomatoes of the 
cultivar ‘Prunus’ at commercial harvest. Unsupervised 
algorithms c, e and i did not segment the images correctly, 

Figure 3. Spectra of the three classes that are present in the spectral hypercubes. The first class are tomatoes, which are 
subdivided in three different ripeness stages, the second class is the stalk and the third class is background. The thick lines 
are the mean spectra for the representative, manually selected areas. The thin lines describe the mean ± standard devia-
tion. a) Reflectance (R) spectra, b) Pseudo-absorbance [Log(1/R)] spectra, c) first derivative of the reflectance spectra, d) 
SNV of the reflectance spectra.
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No prep. Log (1/R)
Derivative 

(window: 15)
Derivative 

(window: 25) SNV
k-means 1.39 0.00 80.56 79.17 1.39
Hier. clust. 1.39 0.00 55.56 50.00 1.39
2-step k-means 4.17 0.00 55.56 52.78 1.39
2-step bier. clust. 0.00 0.00 0.00 0.00 0.00
GMM 0.00 0.00 38.89 38.89 2.78
2-step GMM 0.00 0.00 43.06 34.72 22.22
Combi 1 2.78 0.00 50.00 44.44 0.00
Combi 2 0.00 0.00 0.00 0.00 0.00
Total 8.33 0.00 86.11 86.11 26.39

No prep.: No preprocessing, hier. clust.: agglomerative hierarchical clustering, 2-step hier. clust: 2-step agglomerative hierarchical clustering, 
GMM: multivariate Gaussian mixture model, 2-step GMM: 2-step multivariate Gaussian mixture model, Combi 1: combination of k-means and 
multivariate Gaussian mixture model, Combi 2: combination of k-means and agglomerative hierarchical clustering, total: percentage of the 
vine tomatoes classified correctly by at least one of the unsupervised classification algorithms, Total: The number of images that is segmented 
correctly by one of the unsupervised classification algorithms.

Table 2. Percentage of the vine tomato images segmented correctly by using different combinations of unsupervised classifica-
tion algorithms and preprocessing techniques. All the measured vine tomato images were taken into account.

Figure 4. Representative segmented images of a truss of tomatoes of the cultivar ‘Prunus’ harvested at the commercial 
harvest time as obtained with the different unsupervised classification algorithms on first derivative pre-processed 
spectra: a) RGB image; b) k-means clustering; c) hierarchical clustering; d) 2-step k-means clustering; e) 2-step hierarchi-
cal clustering; f) multivariate Gaussian mixture model; g) 2-step multivariate Gaussian mixture model; h) combination 
of k-means and multivariate Gaussian mixture model; i) Combination of k-means clustering and multivariate Gaussian 
mixture model.
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while the other algorithms nicely segment the image in 
background, tomatoes and stalk. In each investigated 
situation, algorithm e and i did not segment the images 
correctly. These algorithms use a two-step architecture 
with as second step agglomerative hierarchical clustering. 
This unsupervised hierarchical clustering was not able 
to accurately discriminate the tomato flesh from the 
stalk, which can probably be explained by the fact that 
the number of tomato pixels in the image is quite large 
compared to the number of stalk pixels.

Pixel selection and supervised classification
Step 2 of the algorithm is a selection of the number 
of pixels used for training the supervised classification 
models. As the performance of these supervised models 
largely depends on the representativeness of the training 
pixels that are provided for training the model, these 
pixels should be selected in an efficient way. As the accu-
racy, specificity and sensitivity depend on the number 
of training pixels used, it is important to obtain as good 
results as possible with as few training pixels as possible. 
In Table 3, the optimal number of training pixels and 
the corresponding results obtained on a validation set 
consisting of five spectral hypercubes which were not 
used for training the supervised classifier, are summa-

rised. The optimal number of training pixels is deter-
mined based on Figure 5. The most common number of 
selected pixels for the five spectral hypercubes of the 
validation set was decided to be the best suited number 
of selected pixels per class.
When using only the pixels for one spectral hypercube 

to train the supervised classifiers, the technique that is 
most suited for use in industrial applications is PLSDA. 
It is the technique with the highest OA (0.969), a high 
sensitivity (> 0.954) and a quite good specificity (> 0.846). 
Also, the calculation time is acceptable for in-line applica-
tions. Other techniques with a good overall classification 
performance are SIMCA and SVM, but their computa-
tion time is considerably higher than for PLS-DA. These 
higher calculation times for SVM and SIMCA can prob-
ably be explained by the fact that these methods first 
have to project the data on one or more PCA models, 
while PLS-DA only involves multiplication of the spec-
tral vector by the vectors of regression coefficients for 
the different classes. The technique with the lowest 
computation time is logistic regression, but the classifica-
tion performance for this method is also lower. Finally, 
the convex hull gave results with a very high sensitivity. 
However, the specificity is rather low, meaning that a 
considerable number of pixels cannot be classified by this 
method, resulting in a low OA.

The Kennard–Stone algorithm has been developed to 
select pixels that cover the dataset uniformly, while the 
random pixel selection does not take any information 
regarding the pixels into account. Therefore, it is remark-
able that the results obtained with the Kennard–Stone 
algorithm are not always better or do not always result 
in a smaller number of selected pixels than the random 
selection. A possible explanation for this observation may 
be the large difference between the pixel spectra of the 
different classes, which makes the selection of the most 
informative pixels less critical.
As can be seen from Table 3, the classification results 

improve considerably when a second spectral hypercube 
is added in the training phase of the model. Especially 
the specificity improves significantly, while the sensi-
tivity only improves marginally. The combined effect is 
an increase in the OA of at least 4%. The effect on the 
segmentation performance of including a second spec-
tral hypercube is illustrated in Figure 6. The improve-
ment in the segmentation is clearly visible with correct 
classification of all the background pixels and a correct 
classification of green tomatoes as tomato. Especially 

Figure 5. Overall accuracy (OA) as a function of the num-
ber of selected pixels for five different tested images. The 
supervised algorithm used is the convex hull with a ran-
dom pixel selection. The full lines represent the obtained 
classification accuracies, the dotted lines represent the 
straight line between the classification result when 
using 5 pixels and the classification result when using 
987 pixels. The number of pixels where the distance 
between the full line and the dotted line is the largest 
was selected. This distance for the blue lines is shown by 
the black dashed line. The arrow marks the number of 
selected pixels.
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for the left image, this results in a higher OA, specificity 
and sensitivity. In the right image, the segmentation of 
small instances, like some parts of the stalk, is improved. 
It should also be noted that in this case pixel selection 
by the Kennard–Stone algorithm in the training phase 
resulted in slightly better results than random pixel selec-
tion. This might indicate that the Kennard–Stone pixel 
selection algorithm is more efficient in capturing the 
additional information contained in the second spectral 
hypercube than the random pixel selection.

Table grapes
Unsupervised segmentation
In Table 4 the results for the unsupervised segmentation 
of the table grape hypercubes are summarised. While 
the segmentation of the table grapes was not successful 
without pre-processing, 1st derivative pre-processing in 
combination with the combination of k-means and GMM 
resulted in a correct segmentation of 80% of the images. 
The algorithms that were able to segment at least one 

image correctly were all based on a multivariate Gaussian 
mixture model. This can be explained by the small 
number of stalk pixels in the images and the better ability 
of the GMMs to deal with unequal numbers of pixels 
between the classes. When comparing these results with 
the unsupervised results obtained for the vine tomatoes, 
it becomes clear that different unsupervised techniques 
may be more appropriate for segmenting different prod-
ucts. This can be explained by the different nature of the 
unsupervised classification algorithms which have been 
considered. For example, GMMs are better suited to find 
classes of different size compared to k-means clustering. 
Similar to the case of vine tomatoes, agglomerative hier-
archical clustering in the second step of the algorithm 
did not result in good segmentation results for the table 
grapes.

Pixel selection and supervised classification
The results for the supervised pixel classification for five 
trusses of green table grapes are summarised in Table 5. 

No. of 
pixels

OA Sens. Spec. Time (s)
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Convex hull 89 0.7005 0.9951 0.5316 0.4037
SVM 89 0.8888 0.9538 0.8458 0.8250
PLS-DA 5 0.9211 0.9654 0.8791 0.4864
SIMCA 34 0.8204 0.8819 0.8070 1.2727
Log. regression 89 0.8918 0.9321 0.8145 0.0242
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Convex hull 55 0.7411 0.9974 0.5955 0.3996
SVM 377 0.9155 0.9627 0.8614 1.2136
PLS-DA 21 0.9202 0.9657 0.8464 0.4822
SIMCA 13 0.9105 0.9449 0.8828 1.2546
Log. regression 89 0.8674 0.9097 0.7790 0.0258
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Convex hull 89 0.8340 0.9868 0.6966 0.486
SVM 55 0.9557 0.9735 0.8985 1.018
PLS-DA 5 0.9689 0.9808 0.9332 0.5167
SIMCA 55 0.9013 0.9624 0.9065 1.3487
Log. regression 55 0.9566 0.9695 0.8953 0.0570
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Convex hull 144 0.8685 0.9863 0.7314 0.5004
SVM 5 0.9648 0.9728 0.9123 1.3171
PLS-DA 5 0.9695 0.9837 0.9463 0.5139
SIMCA 13 0.9533 0.981 0.9298 1.3170
Log. regression 55 0.9462 0.9620 0.8722 0.0415

Table 3. Segmentation results for the validation set consisting of five spectral hypercubes of vine tomatoes with indication of 
the selected number of training pixels. The used ground-truth was the result of an unsupervised classification which was evalu-
ated as correct through visual inspection.
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SVM, PLS-DA and logistic regression all resulted in a very 
high OA (> 0.95). The difference between these tech-
niques is in the specificity, sensitivity and computation 
time required to segment one image. When ignoring 
the time needed to segment the images, SVM gives the 
best results. Next to a very high OA, the specificity and 
sensitivity are also very high. However, as the algorithm 
is slower than the other two techniques, it is less suitable 
for in-line use. PLS-DA, trained on pixels selected using 
the Kennard–Stone algorithm, also has a very good OA, 
specificity and sensitivity and is faster than SVM. Logistic 
regression is very fast compared to the other techniques, 
but the specificity is lower (< 0.86). When investigating 
this lower specificity, it was observed that the pixels are 
mostly wrongly assigned to the stalk, while belonging 
to the background or the table grapes (specificity 
stalk = 0.628, specificity table grapes = 0.957, specificity 
background = 0.978). This result has a limited influence 
on the OA and the sensitivity as the number of pixels 
belonging to the stalk is much smaller than the number of 

pixels belonging to the background or the grapes. When 
using pixels from two different spectral hypercubes in 
the training set of the algorithm, the results of PLS-DA 
and logistic regression slightly improve, while the results 
of SVM and SIMCA decrease. It should be noted that the 
improvement was small, because the initial result, using 
only one hypercube already gave a high OA.

Discussion
Most studies on hyperspectral imaging of agrofood 
products have been aimed at detecting defects in fruit 
and vegetables or classification of a product in a certain 
quality class.10,14,42–44 While the majority reported 
quite high accuracies, it is difficult to compare these 
as results were typically not reported on the pixel level. 
On the pixel level, classification accuracies of more 
than 99.6% were achieved to discriminate between 
terrestrial and fish species in animal protein by-prod-

Figure 6. Segmentation of two trusses of vine tomatoes using PLS-DA with five randomly selected pixels per class when 
using one training image, and using PLS-DA with five selected pixels per class per training image by the Kennard–Stone 
algorithm when using two training images.
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ucts by using four different algorithms (Mahalanobis 
distance, Kennard–Stone, spatial interpolation and 
binning) to select an appropriate subset for building 
a PLS-DA model. Spatial interpolation was decided to 
be the optimal selection criterion.45 The classification 
results they reported are slightly better than the results 
achieved in our research, but the investigated appli-
cation is too different to allow a useful comparison. 
Portalés and Ribes-Gómez12 were able to detect stalks 
and unknown objects in batches of vines with a very 
high accuracy. The RMSE they achieved was as low as 
0.34% in the case of the detection of grape stalks and 
0.08% when detecting unknown objects. However, 
these results were obtained through spectral filtering 
followed by spatial filtering. It should be noted that 
the described researches used an extensive training 
phase to build segmentation models. This makes the 
algorithms very application dependent and limits their 
flexibility. The algorithm proposed in this study can be 
transferred more easily to other applications, as was 
demonstrated by its successful application to both 
vine tomatoes and table grapes.

It should be noted that the algorithm was developed 
to train segmentation models to segment good quality 
products. However, when small defects are present in 
the dataset, it is expected that this approach will still 
provide good quality segmentation when the spectral 
differences between defects and good quality prod-
ucts are small compared to the differences between 
the different classes. If necessary, this method could 
be made robust against the presence of defect pixels 
by replacing PCA and PLS-DA by their robust counter-
parts.46

Conclusions
A semi-supervised algorithm for training the segmentation 
of hyperspectral images of agrofood products has been 
proposed and tested on vine tomatoes and table grapes. 
With only little human interaction, it was possible to 
build highly accurate supervised models which provided 
an accurate segmentation of the classes in a spectral 
hypercube. The segmentation of spectral hypercubes of 
vine tomatoes in tomato flesh, stalk and background was 
used as a first case study. First derivative preprocessing 
of the spectra resulted in a large improvement in the 
performance of the unsupervised classification methods 
by removing the intensity variation due to product curva-
ture and light scattering effects. Second, PLS-DA was 
found to be the most suitable supervised classification 
method for segmentation of hyperspectral images of 
vine tomatoes, as it achieved very good classification 
results within a short calculation time. By augmenting the 
training set with spectra of a second hyperspectral image 
which was poorly segmented by the initial supervised 
segmentation algorithm, the results improved consider-
ably. This augmentation resulted in an overall accuracy 
for vine tomatoes of 96.95%, a specificity of 98.37% and 
a sensitivity of 94.63% for the test set of five additional 
hypercubes. Next to segmenting vine tomatoes, the algo-
rithm was successfully applied for the segmentation of 
table grapes, showing its general applicability. The best 
performing unsupervised segmentation algorithm for 
table grapes was different from the best algorithm for 
vine tomatoes, proving the need to investigate several 
different unsupervised segmentation algorithms for 
different products. The final PLS-DA model to segment 
table grapes resulted in an overall accuracy of 98.52%, a 

No 
preprocessing

1st derivative 
(window: 15)

k-means 0 0
Hier. clust. 0 0
2-step k-means 0 0
2-step hier. 
clust.

0 0

GMM 0 30
2-step GMM 0 40
Combi 1 0 80
Combi 2 0 0
Total 0 90

hier. clust.: agglomerative hierarchical clustering, 2-step hier. clust: 
2-step agglomerative hierarchical clustering, GMM: multivariate 
Gaussian mixture model, 2-step GMM: 2-step multivariate Gaussian 
mixture model, Combi 1: combination of k-means and multivariate 
Gaussian mixture model, Combi 2: combination of k-means and ag-
glomerative hierarchical clustering, total: percentage of the table 
grapes segmented correctly by at least one of the unsupervised 
classification algorithms; Total: The number of images that is seg-
mented correctly by at least one of the unsupervised classification 
algorithms.

Table 4. Percentage of all the hypercubes acquired for table 
grapes which were segmented correctly by using different 
combinations of unsupervised classification algorithms.
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specificity of 94.52% and a sensitivity of 99.15% for the 
test set of five additional hypercubes.
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