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The detection and characterisation of oxide layers on metallic copper samples plays an important role for power electronic modules in the automo-

tive industry. However, since precise identification of oxide layers by visual inspection is difficult and time consuming due to inhomogeneous colour 

distribution, a reliable and efficient method for estimating their thickness is needed. In this study, hyperspectral imaging in the visible wavelength 

range (425–725 nm) is proposed as an in-line inspection method for analysing oxide layers in real-time during processing of copper components 

such as printed circuit boards in the automotive industry. For implementation in the production line a partial least square regression (PLSR) model 

was developed with a calibration set of n = 12 with about 13,000 spectra per sample to determine the oxide layer thickness on top of the techni-

cal copper surfaces. The model shows a good prediction performance in the range of 0–30 nm compared to Auger electron spectroscopy depth 

profiles as a reference method. The root mean square error (RMSE) is 1.75 nm for calibration and 2.70 nm for full cross-validation. Applied to an 

external dataset of four new samples with about 13,000 spectra per sample the model provides an RMSE of 1.84 nm for prediction and demon-

strates the robustness of the model during real-time processing. The results of this study prove the ability and usefulness of the proposed method 

to estimate the thickness of oxide layers on technical copper. Hence, the application of hyperspectral imaging for the industrial process control of 

electronic devices is very promising.

Keywords: hyperspectral imaging, pushbroom imaging, copper oxide, oxide layer thickness, multivariate analysis, partial least square regression, 
prediction, reflectance
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Introduction
An important trend in the current technological develop-
ment within the electronics industry is miniaturisation, 
which has led to the creation of new field microelec-
tromechanical systems.1,2 At present, many devices and 
objects produced have very small sizes, down to the 
nanometre level. The progress of microelectromechan-
ical systems technology is essential for a considerable 
reduction of costs, adverse effects on the environment, 
and energy and material consumption.1 Electronic circuit 
boards represent the main components of power semi-
conductor modules and their most important constituent 
material is copper, in particular in the form of copper lead 
frames.

The surface quality of copper substrates plays an 
important role in the reliability, quality and lifetime of 
the final product, i.e., the power electronic module. A 
clean substrate surface increases the effectiveness of 
attaching processes, including gluing, wire bonding and 
moulding;3 therefore, contaminants such as oxide layers 
on the substrate surface must be removed before the 
start of any of these processes.4 Surface cleanliness of 
electronic circuit boards extends the product lifetime 
by ensuring adequate adhesion and good electrical and 
thermal performance.5

The great advantages of copper, including its low bulk 
electrical resistivity and high resistance to electromigra-
tion and stress migration, determine its attractiveness for 
the electronics industry,6 and it has long been consid-
ered as a promising interconnection material in the fabri-
cation of semiconductor devices. Thus, understanding 
the mechanism of copper oxidation is crucial to control 
the thickness, homogeneity and nature of the formed 
oxide layers.7 Since copper is susceptible to oxidation 
when exposed to oxidants such as oxygen or water at 
elevated temperatures, its degree of oxidation is believed 
to be affected by environmental conditions, temperature, 
exposure time and surface impurities;8 generally, the 
thickness of the oxide layers increases with the oxidation 
time and temperature.9 During the oxidation process, 
copper is oxidised first to copper (I) oxide (CuO2), also 
called cuprous oxide, and then to copper (II) oxide (CuO), 
known as cupric oxide.10

The formation and growth of copper oxide layers during 
the oxidation of metallic copper may be related to thin 
film interferences in the refracted visible light, resulting 
from the changes in the refractive index from air to thin 
oxide film and copper substrate.11 Copper oxidation 

can be investigated either by surface science or optical 
methods. Surface science methods include the use of 
techniques such as Auger electron spectroscopy (AES), 
X-ray photoelectron spectroscopy (XPS) and secondary 
ion mass spectrometry (SIMS).12,13 Gaining information 
with these physical methods requires ultrahigh vacuum 
conditions, which makes difficult their application for the 
online and in-line characterisation of oxide layers. The 
optical properties of metal oxides have been extensively 
studied by several researchers using ultraviolet–visible–
near infrared (UV–Vis–NIR) diffuse reflectance spec-
troscopy, Raman spectroscopy and Fourier transform 
infrared spectroscopy (FTIR).14,15 These techniques are 
more suited for application in manufacturing processes 
because of their ability to allow a relatively quick, simple 
and non-destructive analysis of the material; Whiteside 
et al. presented a detailed review of the techniques for 
the characterisation of metallic thin films.16

Diffuse reflectance spectroscopy has been used to 
estimate the oxide layer thicknesses of various metals 
including zinc,17 cobalt18 and chromium.19 Sanchez et 
al. performed UV–Vis diffuse reflectance spectroscopy 
in the 200–700 nm range to study the nature of oxide 
films formed on copper surfaces and observed that the 
Vis–NIR absorbance of the copper oxides increased 
with its layer thickness, since the change in the reflec-
tance is proportional to the thickness.20 Dahrul et al. 
similarly reported the influence of the film thickness 
on the properties of the copper oxides; they recorded 
the VIS–NIR absorbance spectra of three copper 
oxide layers formed at different temperatures (350 °C, 
450 °C and 550 °C), revealing that these layers had the 
most prominent absorption band in the visible region 
(at 470 nm) and, furthermore, that the one formed at 
550 °C had the highest absorbance intensity, which 
was explained by the presence of more copper oxide 
crystals absorbing the photon energy.21 These results 
agree with those achieved by Shui et al. by using 
UV–Vis spectroscopy in the 200–800 nm range. The 
authors investigated the properties of copper oxide 
layers prepared by sonochemical synthesis and found 
that their optical properties were strongly affected by 
their morphology.10

According to Lenglet et al., the absorption band of 
copper oxides in the range of 450–630 nm is mostly due 
to the copper and oxygen vacancies in the oxide crystal 
structure caused by the transformation of Cu2O into 
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Cu3O2 at temperatures below 300 °C,22 and this asser-
tion agrees with the study of Machefert et al.23

Despite the several studies focused on the charac-
terisation of copper oxide films, the sample homoge-
neity remains a big challenge in the estimation of their 
thicknesses over the complete surface. The possibility to 
determine the copper oxide layer thickness via UV–Vis 
diffuse reflectance spectroscopy has been demonstrated 
in a previous work.24 However, different contamination 
sources may lead to an uncontrolled growth of the oxide 
layer; since an inspection technique such as UV–Vis 
diffuse reflectance spectroscopy is typically carried out at 
a specific location on the substrate surface, the oxide film 
thickness estimation could significantly be affected by 
the heterogeneity of the substrate surface. Hence, a new 
procedure should be employed to overcome the problem 
of surface inhomogeneity of the oxide layer. From this 
viewpoint, this study focused on the locally resolved 
detection and quantification of copper oxide layers by 
means of hyperspectral imaging (HSI).

The following sections illustrate some of the various 
applications of pushbroom HSI systems in diffuse reflec-
tance; it is worth emphasising that reflectance is the most 
employed mode of HSI.25

The most common industrial branches in which HSI is 
applied are the food and pharmaceutical industries. HSI 
is commonly performed in the visible range to determine 
the freshness of meat,26,27 tomatoes28 and fruits29 in the 
food industry as well as the product quality and safety30 
in both of them.

Wollmann et al.31 focused on the use of HSI systems to 
predict the strength of mechanical components bonded 
on a substrate. Since the presence of thin solid films on 
a substrate may strongly influence the bonding process, 
some investigations on these films by HSI have been 
started.

Gruber et al.32 performed reflectance HSI in the Vis–
NIR range (400–1000 nm) to characterise Al2O3 layers 
on stainless steel foils used for battery production. By 
combining this method with multivariate analysis (MVA), 
they could predict the thickness of the Al2O3 layers 
using four latent variables. The results of the partial 
least square regression (PLSR) model showed a RMSE of 
2.43, indicating a reliable prediction power for the thin 
film thickness. The authors tried to extend the study by 
defining quality control parameters, such as uncoated 
area percentage and mean layer thickness, for a possible 
automated in-line application. HSI remains a challenging 

technique due to the strong variations in the mean layer 
thickness of the samples. A similar work conducted by 
Ham et al. confirmed the ability of HSI to identify Al2O3 
and SiO2 thin films and quantify their thickness; they 
observed a positive correlation between the oxide layer 
thickness and the material absorbance.33

Wollmann et al.34 demonstrated the capability of HSI 
to determine the sheet resistance and conductivity 
of conductive thin films. They studied a transparent 
conductive oxide (indium tin oxide) film. Since high sheet 
resistance is characteristic of substrate defects (contami-
nations or cracks), which can be visualised on the distri-
bution map derived from the HSI images, this technique 
allows the evaluation of the surface contamination of a 
substrate; a patent for this work was filed in 2015.

In the current study, we will extend the list of HSI appli-
cations in the detection and characterisation of oxide 
films on metal surfaces. To the best of our knowledge, 
this is the first work reporting the identification and 
quantification of copper oxide thin films by HSI.

Materials and methods
Sample preparation
In total, 16 copper sheets were provided by Wieland-
Werke AG (Wieland K-14, Cu ≥ 99.95 %, P ≈ 0.003 %, 
5.0 × 3.0 × 0.8 cm). They were first ultrasonically cleaned 
at 50 °C for 5 min with Vigon A 200 (Zestron) as cleaning 
medium and then rinsed with deionised water for 3 min. 
The copper sheets were oxidised at two different temper-
atures (150 °C and 175 °C) for ten different oxidation 
times. The oxidation temperature and times are used 
because they are used as standard parameters for transfer 
moulding.

Oxide layer thickness measurement
The thicknesses of the oxide layers were determined by 
depth profiling using AES, details were reported else-
where.24 Twelve of the sixteen samples were used for the 
PLSR calibration and the remaining four for validating the 
PLS model.

Hyperspectral image collection and 
processing
Vis hyperspectral imaging system
A hyperspectral pushbroom imaging system covering the 
spectral range of 425–725 nm, with a spectral resolution 
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of 8 nm, was used to acquire the hyperspectral images 
of copper samples in the reflectance mode. The system 
consists of a 12-bit 640 × 480 pixels charged-coupled 
device camera (PixelFly PCO VGA; PCO AG, Kelheim, 
Germany) and a spectrograph equipped with an optical 
slit of 50 µm (ImSpector V8 ½, specim; Spectral Imaging 
Ltd, Oulu, Finland) and an 8.5-mm lens (1 : 1.5 television 
lens; Cosmicar, Japan). Additional components included 
a conveyor belt (Umbio), a computer equipped with 
the CamWare V3.06 software (PCO imaging, Kelheim, 
Germany) for data acquisition, and a 50-W tungsten 
halogen light source (Radium Lampenwerk GmbH, 
Germany) oriented at 45 ° with respect to the horizontal 
plane.

The Red–Green–Blue (RGB) images were acquired 
using a Canon PowerShot G12 digital camera, with the 
following parameters: shutter speed: 1/60 s, ISO-320, 
f/3.5. For multivariate analysis of the images, they were 
converted to single-wavelength-based RGB images (red: 
650 nm, green: 500 nm, blue: 450 nm).

Image acquisition and calibration
The hyperspectral images were recorded in reflec-
tance mode using a camera exposure time of 12 ms. 
The conveyor belt speed was set to 2.75 mm s–1 and 
the distance between the optical instrument and the 
sample was about 26 cm. The raw images acquired 
by the HSI system were corrected with white refer-
ence image Iwhite and dark image Idark

35 into reflectance 
units.

Image processing and MVA
The whole data analysis and image processing were 
performed using the Evince Prediktera 2.7.9 software 
(UmBio AB, Umeå, Sweden). To remove the background 
of the samples and bad pixels, a principal component 
analysis (PCA) with two components, explaining 97.02 %, 
was used.

In this study, a PLSR calibration model was built for a 
data set of 12 samples (n = 12) and validated with the 
leave-one-out cross-validation technique, used as full 
cross-validation method.36 An external validation was 
further performed to evaluate the performance of the 
developed calibration model on the samples of the 
prediction set. The partitioning of the samples into cali-
bration and validation set as well as the corresponding 
oxide layer thickness are shown in Table 1. Unfortunately, 
there was a detector error while measuring two samples 
(2 min and 8 min at 175 °C) which led to some pixel 
failures; these were excluded for analysis.

In order to decrease the effects of random noise, spec-
tral preprocessing algorithms such as Savitzky–Golay 
smoothing with 23 points and baseline correction were 
used. These algorithms reduce unessential effects on 
the data extracted from the hyperspectral images and, 
thus, improve the robustness and predictive ability of the 
model.

The performances of the calibration and prediction 
models were evaluated based on the coefficients of 
determination (R2) and the RMSEs, respectively desig-
nated as R2

C and RMSEC for the calibrating process, R2
V 

Oxidation 
time (min)

Oxidation temperature: 150 °C 
Oxide layer thickness (nm)

Oxidation temperature: 175 °C 
Oxide layer thickness (nm)

Used for

 0  1.8  1.8 Calibration
 1  3.5  3.1 Calibration
 2  5.4  5.4 Validation
 3  7.4  7.9 Calibration
 4  9.4 10.6 Validation
 5 11.5 13.3 Calibration
 6 13.5 16.1 Validation 
 7 15.5 18.8 Calibration
 8 17.5 21.6 Validation
10 21.4 27.1 Calibration

Table 1. Determined thicknesses for oxide layers, formed with different oxidation times at 150 °C and 175 °C, using the PLS 
model.24
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and RMSECV for the cross-validation process, and R2
P 

and RMSEP for the prediction process. Generally, an 
optimal model should provide high values of R2

C, R2
V and 

R2
P and low values of RMSEC, RMSECV and RMSEP;36,37 

however, the prediction accuracy of a model is evaluated 
based on the (small) difference between RMSEC and 
RMSEP.38

Results and discussion
Spectral features of copper oxides
Figure 1 shows the absorption spectra averaged over 
all the 12 samples for the calibration set, calculated for 
the various oxidation times and temperatures. A copper 
substrate spectrum is composed of overlapped spectra 
of metallic copper and copper oxides. Therefore, the 
spectral signatures of the samples contain useful infor-
mation correlated with the score images Figure 2); in 
other words, at a specific wavelength, a sample with low 
absorbance (high reflectance) has a high proportion of 
blue in the score image, while one with high absorbance 
(low reflectance) shows a higher proportion of red.

The difference observed in the absorbance could be 
attributed to the different oxide layer thicknesses of each 
sample. Copper is known as a shiny material with high 
reflectance in the visible wavelength range and absor-
bance of the red light. However, the formation of oxide 
layers on its surface increases the refractive index and 

reduces the extinction coefficient, diminishing the reflec-
tance and thus increasing the absorption capability of 
the material. Hence, the broad band in the range from 
406 nm to around 550 nm is associated with the strong 
absorption of Cu2O and, as the wavelength increases, the 
refractive index and the extinction coefficient decrease, 
enhancing the absorption in this spectral region.39

The comparison between the averaged spectra 
obtained by the HSI system and classical spectroscopy 
from the previous work24 revealed some differences in 
the wavelength range around 450 nm, which was due 
to the limited spectral range of the pushbroom imager 
working at the lower limit at this point. In addition, the 
set-up was different due to the use of an integrating 
sphere.

Figure 1 shows the effect of oxidation time and temper-
ature on the spectra of the copper samples with an 
increase of the absorbance. The oxidation time increased 
considerably the absorbance of the copper substrates 
in the range of about 406–550 nm, while only a slight 
increase was observed when varying the oxidation 
temperature. Thus, the absorbance of copper increases 
with the oxidation time and temperature (Figure 1), as 
reported in the literature.39

Figure 2 shows the score and the classical RGB images 
of each sample of the calibration set. Apparently, no 
visible symptoms of oxidation stress can be observed 
in the RGB images. Since the PLSR model based on the 
RGB images was not satisfactory, the one based on the 
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Figure 1. Reflectance spectra obtained by averaging 13,000 spectra in the wavelength range from 425 nm to 725 nm of 
copper substrates oxidised at a) 150 °C and b) 175 °C. The oxidation time of each sample is given in minutes.
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Vis spectra was built up. Clear differences between the 
samples were observed according to the oxidation time 
and temperature.

Development of a calibration model
The PLSR model for estimating the oxide layer thickness 
was established using the mean spectra of each of the 
12 copper substrates from the highlighted areas shown 
in Figure 2, which were considered as the X-matrix, while 
the Y-matrix was designed from the oxide layer thick-
ness values obtained by using the approach described 
in the previous work using AES depth profiling.24 The 
optimal number of latent variables (LV) is determined 
by the lowest RMSECV and highest R2.40 In this study, 
the optimal PLSR model was obtained using four LVs. 
Figure 3 shows the correlation between the reference 
values and those calculated from the HSI spectral infor-
mation, and a linear fit can be observed between the two 
sets of values.

In Figure 3, the sample points are very close to the 
linear fit, indicating a very good model fitting. The cali-
bration and cross-validation processes provided, respec-
tively, R2

C = 0.99 with RMSEC = 1.75 nm and R2
CV = 0.90 

with RMSECV = 2.70 nm, implying a good performance 

of the model. By using four LVs, the variance explained 
by the model for the X- and Y-variables was 98 % and 
90 %, respectively, indicating that four PLS components 
are sufficient to describe most of the variance in the data 
according to the spectral information. The R2

CV value of 
0.90 proves the good predictive power of the applied 
model. In addition, the relative error of the calibration 
model, calculated by means of the highest predicted 
oxide layer thickness value (30.3 nm) and the RMSECV, 
was about 8 %, and such a small percentage of deviation 
further confirms the good performance of the model. 
According to the cross-validation results, it can be stated 
that the PLSR model was suitable for estimating the thick-
ness of the copper oxide layers. The first four PLS weights 
of the regression model, which describe the copper oxide 
content in the spectral range of 425–725 nm, are shown 
in Figure 4 as follows: the fourth vector has the highest 
number of sensitive wavelength ranges and, similarly to 
the mean absorbance spectra (Figure 1), describes the 
main information at approximately 508 nm because the 
regression coefficient in the PLS model is the highest at 
this wavelength. This indicates that four LVs are sufficient 
for a reliable extraction of the relevant information for 
estimating the thickness of copper oxide layers.

Figure 2. Score and RGB images of copper substrates obtained from the calibration set, oxidised at different times and 
temperatures. The coloured pixels represent the oxide content, from low (blue) to high (red). The black squares show the 
area for calculation of the average spectra for each sample (PC1 92.9 %, PC2 4.12 %).
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Prediction based on PLSR
To assess the predictive ability of the PLSR model built 
on the calibration set, a prediction set containing four 
samples oxidised at 175 °C for 2, 4, 6 and 8 min was used 
for an external validation. The results indicated that the 
PLSR model was very effective in predicting the oxide 
layer thickness, with R2

CV = 0.90 and RMSECV = 2.70 nm. 

Using this model for predicting the same attribute for the 
samples of the validation set achieved a powerful predic-
tive ability, with R2

P = 0.95 and RMSEP = 1.84 nm. Figure 5 
shows the correlation between the reference values 
and those predicted based on the PLSR. To achieve a 
better statement of the complete surface, we divided the 
surface into five equal-sized areas. The linear fit indicates 
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Figure 3. Partial least square regression (PLSR) plots between reference and measured oxide layer thicknesses for the 
visible spectra obtained from a) the calibration set (n = 12) using four PLSR components and b) the results of the full 
cross-validation. RMSEC and RMSECV are the root mean square errors of the calibration and cross-validation processes, 
respectively, and also the determination coefficients (R2) are shown.
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Figure 4. Regression coefficient plot obtained from the PLS model built on the 
calibration set for the prediction of the copper oxide layer thickness.
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that the testing values are almost equal to the refer-
ence ones. The closer the sample point to the diagonal 
line, the better the model. The small error rates and high 
square correlation coefficients confirm that the model 
attained accurate predictions.

To get a more visual impression of the inhomogeneity 
of the oxide layer thickness, the thickness for every pixel 
from the prediction and calibration sets was predicted 
and plotted in Figure 6. The difference in the layer thick-
ness within one sample increases with oxidation time. 
This is due to some areas on the surface where the oxida-
tion is not too strong. 

The interpretation of the predicted false-colour images 
of all sets shown in Figure 6 indicates an inhomoge-
neous thickness of the oxide layers. The thicker the oxide 
layer, the less inhomogeneous the visual impression. For 
more tangible data, the high variance can be explained 
with R2

C, R2
CV, R2

P, RMSEC, RMSECV and RMSEP. The high 
regression coefficients and low absolute errors prove the 
robustness of the calibration and prediction models. The 
prediction accuracy of a model is evaluated based on the 
difference between RMSEC and RMSEP: the smaller this 
difference, the more accurate the model.41 In this study, 
the absolute difference between RMSEC and RMSEP 
was small (0.09 nm), demonstrating the robustness and 
accuracy of the developed models. The obtained results 
prove the ability and reliability of hyperspectral push-

broom imaging systems for estimating the thickness of 
copper oxide layers on metallic copper substrates. All in 
all, the results show that the application can be used to 
determine the oxide layer thickness on technical copper 
surfaces. Before installing the measurement equipment 
at the production line, there should be a more detailed 
experiment plan with real samples. Due to the measure-
ment set-up, the roughness of the surface directly influ-
ences the reflectance of light on the surface. By having 
real samples with a very large inhomogeneous roughness, 
the power of the model could be affected. In order to 
avoid deterioration of the predictive power of the model, 
a new sample set is needed. The given sample set in this 
study was chosen because of the wide range of oxide 
layer thicknesses. If a smaller range of thicknesses is 
representative of production samples, the model should 
be adapted to this particular range.  For example, there 
are some sources in the literature, which found a critical 
oxide layer thickness for adhesion of mould compounds 
that could be set as a scope for production.42–46 By imple-
menting the HSI system to a production line, this param-
eter could be tracked for all parts. In the end the use of a 
HSI system leads to an extreme reduction of time. Each 
measurement of an oxidised sample with the AES depth 
profiling system needs approximately four hours of work. 
In contrast to that, a HSI measurement needs around a 
few seconds.
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Figure 5. Reference vs predicted copper oxide layer thicknesses 
plot based on the external validation set.
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Conclusions
Copper substrates are used in the fabrication of numerous 
electronic devices due to the great advantages offered 
compared to other metals. The chemical composition 
and physical structure of copper substrates influence 
the process control and the characteristics of the final 
electronic products. The aim of this study was to demon-
strate the capability of the HSI technique in monitoring 
copper-based materials and provide spectral information 

about their chemical composition. In particular, this study 
reports for the first time the use of HSI to predict the 
thickness of the copper oxide layers formed on metallic 
copper materials.

The results demonstrated that HSI combined with PLSR 
provides a tool for rapid and non-destructive oxide film 
analysis, which accurately predicted the oxide layer thick-
ness of test copper sheets. In the visible range (425–
725 nm), the PLSR model with four PLS components 

Figure 6. Predicted oxide layer thicknesses and RGB images for the copper substrates from the prediction 
and calibration set, oxidised at different times.
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provided, for the cross-validation process, a determina-
tion coefficient of 0.90 and a RMSE of 2.70 nm. The 
external prediction based on the PLSR model also exhib-
ited a good performance, with a determination of 0.95 
and a RMSE of 1.84 nm.

The performance of this technique in terms of predic-
tion accuracy was compared to that of conventional 
spectroscopy. The low absolute difference (0.86 nm) 
observed between the validation and prediction errors 
confirmed the robustness and good quality prediction of 
the proposed HSI technique, although a better prediction 
of quality attributes would require a larger sample size.

The rapid and accurate measurement of copper oxide 
layer thickness is important for reducing the waste rate 
and manufacturing costs of electronic devices and conse-
quently increasing the final product quality. In this view-
point, the use of pushbroom HSI system represents a 
rapid and non-destructive method, suitable for applica-
tions in the industrial field for the quality control of final 
electronic products and the identification of defects and 
highly oxidised copper substrates. However, the chal-
lenge represented by irregular oxide film growth must be 
overcome to enable a better understanding of the impact 
of the oxide layer thickness on processes such as gluing 
and bonding and, hence, on the process control.
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