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Infrared thermal imaging is an evolving approach useful in non-destructive evaluation of materials for industrial and research purposes. This study 

investigates the use of this method in combination with multivariate data analysis as an alternative to chemical etching; a destructive method cur-

rently used to recover defaced serial numbers stamped in metal. This process involves several unique aspects, each of which works to overcome 

some pertinent challenges associated with the recovery of defaced serial numbers. Infrared thermal imaging of metal surfaces provides thermal 

images sensitive to local differences in thermal conductivity of regions of plastic strain existing below a stamped number. These strains are created 

from stamping pressures distorting the atomic crystalline structure of the metal and extend to depths beneath the stamped number. These ther-

mal differences are quite small and thus not readily visible from the raw thermal images of an irregular surface created by removing the stamped 

numbers. As such, further enhancement is usually needed to identify the subtle variations. The multivariate data analysis method, principal com-

ponent analysis, is used to enhance these subtle variations and aid the recovery of the serial numbers. Multiple similarity measures are utilised to 

match recovered numbers to several numerical libraries, followed by application of various fusion rules to achieve consensus identification.

Keywords: serial number restoration, lock-in infrared thermography, principal component analysis, Zernike moments, similarity measure

Introduction
Stamp marks, which provide a means of unique iden-
tification for firearms and automobiles, are regularly 
defaced for criminal activities. The stamping of a serial 
number onto metals causes a permanent change in 

shape, primarily due to the inability of regions of crys-
talline arrangement within localised grains to resist 
the induced stress of stamping, leading to an altera-
tion of the structure and, in extension, the interlocking 
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grain boundaries. This resulting deformation extends 
to some depth below the stamped mark and is known 
as the zone of plastic strain.1–6 Although the shape of 
this underlying region will be complex depending on 
various factors, it can be considered as a sphere to 
make an estimate of the depth with its radius equating 
to the depth of the zone of plastic strain.6 This area 
has physical and chemical properties that differ from 
those of non-stamped metal due to the changes in its 
microstructure. Approaches used for the recovery of 
obliterated serial numbers leverage such differences to 
recover the numbers.1–6

A widely used approach is chemical etching. This 
process utilises the change in chemical potential that 
makes the defaced area more reactive to acids, allowing 
recovery of serial numbers.1–4 The method, however, 
is a highly controlled and destructive recovery process 
that requires delicacy and some expertise in applying 
and removing the etchant. Additionally, because it is a 
destructive method, the test can only be run once and 
the test specimen is permanently altered. This short-
coming is the impetus for developing a non-destructive, 
reproducible method of defaced serial number identifi-
cation. A non-destructive method that has been tested 
for this is magnetic particle inspection.3 However, this 
method has limited applicability (ferromagnetic alloys 
and magnetic metals). Other non-destructive methods 
being tested, including scanning acoustic microscopy7 
and spectral imaging,8 are experimental and their effec-
tiveness is yet to be established.

One non-destructive technique that has proven useful 
in the detection of defects in metals and holds promise 
for use in the identification of defaced serial numbers, is 
infrared thermal imaging.9–13 Thermal imaging captures 
the infrared radiation from the surface of an object and 
converts this to visible images scaled by temperature, 
allowing visualisation of the temperature evolution over 
time. Thermal imaging is analogous to spectral imaging 
as both methods seek to obtain images of objects at 
changing parameters; temperature/time for thermal 
imaging and intensity/wavelength for spectral imaging. 
Thermal imaging seeks to locate and characterise flaws 
in an object by measuring, under controlled conditions, 
their effect on heat flow through the object by observa-
tion of the propagation of applied thermal energy.10 Local 
regions of plastic strain can be detected as the tempera-
ture gradient therein will differ from the rest of the surface 
due to the local change in thermal conductivity. Infrared 

thermography involves the use of an infrared camera 
and heating apparatus to capture this effect. However, 
the data acquired through thermographic imaging tech-
niques can be noisy due to undesired signals from several 
factors including unevenly heated surfaces, radiation 
from the heated surface and local emissivity variations. 
One way to mitigate these effects is by using the lock-in 
infrared thermography technique.9,14–17

Lock-in thermography (LIT) involves inducing sinusoidal 
energy waves into the surface of a sample at a lock-in 
frequency, and collecting the infrared thermal images of 
the sample surface over the entire period of the pulsed 
wave.14,15,17 Digitally processed according to the lock-in 
principle, the thermographic image sequence is analysed 
and compressed into an amplitude image and a signal 
phase image.14,15,17 The developed phase and amplitude 
images have some surface features suppressed, making 
them more robust than raw thermal images for analysing 
sub-surface features.14,15,17,18 This process, being sensi-
tive to variations in thermal conductivity, is evaluated for 
recovering defaced serial numbers.

A possible pitfall of using LIT for serial number recovery 
is the sensitivity of the imaging apparatus to visibly 
capture what might be infinitesimal changes in tempera-
ture gradient across the surface. Another is the capture 
of other features (such as possible material inhomogenei-
ties) within the thermal depth range.15 A conceivable way 
to overcome these challenges is using multivariate image 
analysis (MIA), a computational process that allows for 
the examination of collected images to help with detec-
tion and analysis of possible variations within the data. 
Successfully applied in diverse fields,19–24 a very popular 
form of MIA is principal component analysis (PCA); a 
technique used for identifying patterns in data and 
expressing them in a way that highlights the importance 
of elements within the data.25 When used for images, 
the resulting principal components can be formed into 
score images that are of the same spatial dimensions 
as the original images and provide a visual representa-
tion of the information retained in respective principal 
components. This method has been successfully utilised 
in some thermal imaging applications for non-destructive 
testing to capture the thermal contrast evolution in time, 
enhancing thermal signatures of sub-surface defects and 
simultaneously reducing optical effects that could lead 
to false alarms.26,27 Using this method, it is conceivable 
that the unique thermal gradient of the zone of plastic 
strain across the phase and/or amplitude images will be 
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identified and clustered in score images to reproduce the 
defaced number.

Other methods for processing thermographic data 
include differentiated absolute contrast (DAC),28,29 ther-
mographic signal reconstruction (TSR)30,31 and pulsed 
phase thermography (PPT).32 These are, however, limited 
in needing user intervention for slope calculation (DAC), 
dependence of the performance on polynomial order and 
insensitivity to subtle defects (TSR) and the effect of high 
frequency noise from raw data on the results (PPT).

However, even after recovering the removed numbers, 
it is imperative to conclusively identify the number 
without bias via an automated process. This identification 
can be achieved by comparing score images of recovered 
numbers to a library of unaltered digital number images 
to determine the best match based on similarity meas-
ures.33–35 Such comparisons between score images of 
defaced numbers and library images come with several 
challenges including image size differences, as well 
as possible translation, scale and rotation differences 
between the images being compared. These challenges 
can be overcome by comparing image features extracted 
via orthogonal moments, in lieu of the actual images. For 
this study, Zernike moments36 are used to characterise 
the score images into vectors of a predetermined size. 
Invariant to rotation, Zernike moments have been proven 
to outperform other orthogonal moments including 
general orthogonal moments, Legendre moments and 
Jacobi Fourier moments as a global shape descriptor for 
object classification and retrieval.36–42 Other orthogonal 
moments could be used such as wavelet moments,43 
Krawtchouk moments,44 Tchebichef moments45 and 
pseudo Zernike moments,42 but these moments were 
not studied.

The smaller the resulting output from a similarity 
comparison, the closer the corresponding compared 
objects are within the characteristics captured by the 
similarity measure used. Several similarity measures 
are used in this study to compare the developed score 
images to several digitally developed libraries of number 
images to provide a holistic and unbiased comparison. As 
such, it is pertinent to combine the individual similarity 
values in a way that establishes an objective consensus 
to the comparison results. Data fusion, a technique used 
in combining individual sources of information into a 
single informative output with improved reliability and 
less ambiguity,46,47 is used to achieve this consensus. A 
high-level or decision level fusion approach is used in 

this study as it involves the fusion of several parameters 
(similarity values), each of which can be used to make an 
independent identification,47,48 to yield a final inference.

To test the process, a stainless steel plate with several 
numbers stamped into it is used. Each number on the 
sample was machined off to successively lower depths 
and specifically tested to ascertain the validity of the 
entire process. Results are presented for this preliminary 
study.

Materials and methods
Samples
Stainless steel plates with numbers
The experimental process was carried out on a clean 
stainless steel surface with no numbers stamped into it, 
to serve as a control experiment. Another stainless steel 
plate (72 mm × 25 mm) stamped with several numbers to 
depths of approximately 0.2 mm was used to simulate 
the mechanically stamped serial numbers. This sample, 
obtained as a test piece from Precision Forensic Testing,49 
was originally 6.35 mm thick. A uniform thickness of 
0.18 mm was mechanically shaved off the top surface, 
leaving the numbers barely visible. Each number except 
the first was then progressively shaved off to a depth 
0.03 mm beyond the previous. The first number on the 
plate is left visible to serve as a control. Figure 1 shows 
the original sample. After the defacing, it is impossible to 
visually identify the numbers present before the material 
is removed. The sample was sanded using a 600 grit sand 
paper to polish off the surface and thoroughly cleaned 
with ethanol to remove any residue from the sanding 
process, ensuring a smooth surface as shown in Figure 2. 
The boxes show the areas around each defaced number 
isolated and individually analysed. Although the thermal 
images were initially collected by the infrared camera to 
cover areas over two numbers, the thermal image data-
sets were split to contain the areas over each number 
and analysed separately.

Figure 1. Stainless steel sample with stamped numbers.
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Sample preparation
The surface area around the defaced numbers was 
covered with a light coat of India ink (~500 µm) to reduce 
the possible adverse effects from surface emissivity on 
the quality of the captured images.

Lock-in infrared thermal imaging
Data collection
The experimental system consists of an infrared camera, a 
function generator and thermal energy source as shown 
in Figure 3. The primary thermal energy source, a 5 W 
Ar-ion cw laser, operating in all-lines mode, is chopped 
with a Uniblitz mechanical shutter to apply pulsed energy 
to the sample. The laser was set up to put out 3 W of 
thermal energy and losses through the top-hat filter 
which transforms the Gaussian shape of the beam into a 
uniform intensity beam as well as the prisms account for 
about half of the power, allowing approximately 1.5 W 
to the sample. This power level gave a good trade-off 
between inducing a temperature swing in the sample 
over the pulsing cycle, while avoiding overheating the 
sample and thus losing the ability to capture the small 
thermal gradients characteristic of the zone of plastic 
strain. A FLIR SC6700 infrared camera is used to collect 
thermal images of the sample surface and a Stanford 
Research Systems model DS340 15 MHz function gener-
ator synched with the camera is used to control the pulse 
rate of energy from the laser. A synchronising circuit is 

used to synchronise the laser pulses with the camera’s 
imaging apparatus ensuring a consistent rate of capturing 
images over an entire pulse irrespective of the cycle time 
used. A digital hot plate is used to heat up the sample to 
an initial temperature of approximately 73 °C as meas-
ured by a digital thermometer. This is done to ensure 
that the sample is at an even initial temperature and to 
enhance the contrast of the thermal gradient across the 
surface to improve contrast.10 The laser beam is also 
pulsed into the sample a few times prior to experimen-
tation to further ensure even distribution of tempera-
ture through the sample. During the experiments, the 
sample on the hot plate is placed in the focus range of 
the camera and thermal energy is pulsed into the surface 
of the sample under observation using the laser at a 
defined modulated (lock-in) frequency of 0.05 Hz. The 
temperature distribution on the heated surface is moni-
tored using the infrared camera with images over the 
pulsing cycle.

Images are simultaneously collected at a frame rate 
of 32 frames per pulse cycle. This process is carried 
out for several cycles. If the heat propagates irregularly 
through the plastic deformation areas below the stamped 
numbers, whereas propagation of the heat through non-
deformed areas is more regular, then over the course of 
several heat pulses, differences in the thermal images 
between the irregular propagation in the deformed areas 
and the regular propagation in the non-deformed should 
be increased by including more pulses. The white noise in 
the thermal images associated with the regular propaga-
tion is essentially averaged out by including more pulses, 
and 15 pulse cycles were used for these studies. Figure 4 
is a mean temperature-time plot across all pixels of the 
defaced area showing the pulsing of thermal energy 
through the sample over time. The values over each 
peak show the maximum temperature value in that cycle. 
Control of the heating is difficult and slight variations in 
the maximum temperature over the course of the 15 
cycles is a typical occurrence. The effect of the pulse-
to-pulse temperature variation is currently under further 
investigation.

For the sample used in this study, the experiment setup 
is adjusted with the camera field of view narrowed to 
capture areas over two of the removed numbers. This 
is done both to enhance the detail captured with more 
pixels across a single number, as well as to ensure an 
even spread of the pulsed thermal energy from the laser 
beam to avoid possible lateral thermal gradients. The 

Figure 2. Stainless steel sample with numbers defaced 
(boxes show areas extracted and individually analysed for 
each number).

Figure 3. Experimental setup.
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captured images are then digitally split to have data-
sets that are focused on the areas around each removed 
number.

Lock-in analysis
The process used to develop phase and amplitude images 
using LIT is as described in Reference 14. This process 
involves applying sinusoidal thermal energy waves into 
the surface of a sample at a defined frequency (lock-in 
frequency), and collecting the infrared thermal images of 
the sample surface over the entire period of the pulsed 
wave. These thermal images are processed via a two-
channel image correlation process to develop an ampli-
tude image A, and a signal phase image ϕ using Equations 
1–4:14
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where k is the number of frames per lock-in period, F(i) 
is the ith thermal image collected by an infrared camera, 
t = [2π(i – 1)] / k, sin(t) and cos(t) are weighing factors 
and S0° and S90° are the in-phase and quadrature signals, 
respectively.

Alternatively, the phase image can be developed by 
inverting the in-phase and quadrature signals as shown 
in Equation 5.16

	
°

° − °
− °

=
0

0 / 90
90 SS

S
	 (5)

The image formed using this inverted equation holds 
some advantages over regular phase images including 
improved spatial resolution while maintaining the 
emissivity corrected property of phase images.16 As 
in cases like this study when it is suspected that the 
thermal gradient differences are very small, using this 
image might improve contrast helping to recover the 
number. Consequently, this method is used in this 
study to develop the phase images. Also, to improve 
contrast in the amplitude images, the fourth power 
was used instead of the square of the in-phase and 
quadrature signals. This reduces the effects of the 
emissivity multiplier for each signal and improves the 
output image.

A major drawback of LIT is the presence of blind 
frequencies (i.e. pulsing frequencies at which the 
contrast between clean areas and defective areas is 
minimal). Defect detection in phase images devel-
oped at these frequencies is usually difficult and thus, 
such frequencies need to be avoided. To address this 
shortcoming, phase difference plots are developed9,18 
to determine the best test frequencies for collecting 
data. This is done by calculating phase images at 
several frequencies and determining the phase differ-
ences between defaced and non-defaced areas. The 
frequencies at which these differences are maximised 
are selected to be used for the experimentation. An 
example of this analysis is presented in the Results and 
discussion.

Each pulse cycle is used to develop one amplitude and 
one phase image in which the contrast change across 
the surface due to the variation in thermal gradient from 
the defects is improved. Fifteen of these images are 
developed, each at an increasing temperature from the 
input energy pulse. The variation in degree of phase shift 
between defaced areas and clean non-defaced areas 
captured in the amplitude and phase images at different 
cycles due to changes in the thermal gradient may be 
small and thus difficult to observe. As such, PCA of the 
images should bring more focus on the propagation 
differences, reproducing it in a single score image inde-
pendent of others.

Figure 4. Relative mean temperature-time plot across the 
defaced 2 surface.
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PCA is carried out independently on the matrix of 
the phase images and that of the amplitude images and 
respective score images are visually inspected to deter-
mine if phase or amplitude score images best reproduces 
the defaced number.

Principal component analysis
The input matrix for PCA consists of a collection of 
filtered phase or amplitude images (referred to hence-
forth as input images) processed from the respective 
thermal image sequences captured using an infrared 
camera. The input images were filtered using a moving 
average filter to enhance the contrast between pixels by 
averaging the value of pixels in a rectangle of specified 
length and width (12 × 12 pixels for this study) around a 
particular pixel and replacing its intensity value with the 
average. This window size was chosen as it represents 
about half of the pixel number that spans the width of a 
number stamp cut for the sample used in this study. For 
the edges of the images, the window is taken with the 
entire length and/or width of the rectangle on the inward 
side. This window increases as the number of pixels 
closest to the edge increases until the full length can be 
used on all sides. The input images for the area around 
the defaced 0 were further preprocessed using standard 
normal variate50 to remove some light scatter effects 
caused by some surface unevenness still existing even 
after polishing that were observed on visual inspection 
of the input images. This was not done for the images 
for the other defaced numbers as there was no observed 
scatter in their input images.

The PC25 carried out on this input matrix is briefly 
defined:
	� Each input image is unfolded (row-wise or column-
wise) and concatenated as a single column of a new 
representative matrix X as shown in Figure 5.
	�The covariance matrix C is determined for the matrix.

	�The eigenvectors (V) and their corresponding 
eigenvalues (Σ) are determined for the covariance 
matrix.
	� Each eigenvector (v) multiplies the representative 
matrix X to develop a score vector which captures a 
percentage of the variance within the original images 
given in its corresponding eigenvalue.
	� Each principal component score is then folded into a 
score image to visualise the information captured as a 
linear combination across the input images.
In projecting the input images into orthogonal direc-

tions, each principal component captures variation across 
the phase or amplitude images. Among these variations is 
the change in the rate of heat propagation between the 
defaced areas and clean areas, which appear as subtle 
signatures in the input images. These variations, largely 
identical in defaced areas, are mainly captured by a single 
principal component, independent of other linear varia-
tions across the input images. 

Although identical in the process of developing, 
there are some differences in the amplitude and phase 
images developed from thermal images collected over 
succeeding periods. The transient flow of thermal energy 
over time through the sample will cause changes in the 
phase shift in different cyclic periods until thermal equi-
librium is achieved. Accordingly, each developed ampli-
tude and phase image will be unique in the degree of 
phase shift between defaced and clean areas. As such, 
several amplitude and phase images covering different 
periods will capture this changing phenomenon and PCA 
is expected to leverage these changes to reproduce the 
defaced number from the zone of plastic strain.

Feature extraction
Binarisation of score and numerical library images
The reference library images were created by first typing 
out the numbers in Microsoft Word to the different fonts 

Figure 5. Schematic of unfolding the phase images for PCA.
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used. These were then expanded so each number occu-
pied an entire page (11 × 8.5 inches). The MS Word docu-
ment was then converted to individual bitmap images and 
imported into MATLAB to create digital image libraries of 
sizes 200 × 150 pixels. Figure 6 shows an example of the 
numbers for the Times New Roman font library images.

The PCA score images are initially preprocessed into 
binary black-and-white images to match the black-and-
white library images. The binarisation process involves 
selecting an optimal threshold of pixel intensities to best 
separate background from object pixels. This threshold 
is selected for each individual image iteratively by using 
an initial assumption of the four-pixel mean intensity 
from each corner of respective score images. The mean 
value of pixels above this initial threshold (assumed to 
represent objects within the image) and those equal to 
or below the threshold (assumed to be represent the 
background) are separately calculated and then averaged 
together. This average value is used as a new threshold. 
This iterative process continues until there is no change 
in the determined threshold. The corresponding score 
image is then binarised with respect to the threshold, 
with 1 for above the threshold as white and 0 or below 
being black.

Zernike moments
Computation of Zernike moments for binarised score and 
numerical library images involves four steps: preproc-
essing the image to make it scale and translation invar-
iant, computation of radial polynomials, computation of 
Zernike basis functions (Zernike polynomials) and finally 
computation of Zernike moments by projecting an image 
onto the Zernike basis functions.36,39–42

Preprocessing the image to make it scale and transla-
tion invariant involves normalising the image using its 
regular moments as described in Reference 42. Scale 
invariance is achieved by altering the object size such 
that its area (pixel count for binary images) is set to a 
predetermined value (β). This value resizes the object in 

the image, either increasing its size or reducing it with 
respect to its original area and needs to be determined 
empirically to ensure that the entire object still lies within 
the image and is large enough to be discernible. For all 
image objects in this study (score and numerical library 
pixels set to 1 by the binarisation process), the β value is 
set to 5000. Scale invariance is achieved by Equations 6 
and 7.

	 ( )  =  
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, , x yg x y f
a a
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=

00
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where (x,y) are the pixel coordinates of each pixel in the 
image, m00 is the area (pixel count for binary image) and 
g(x,y) is the invariant image pixel coordinates.

Translation involves moving the centre of mass of the 
object in the image to the centre of the image. This is 
achieved as shown in Equation 8.

	 ( ) ( )= + +, , h x y g x x y y 	 (8)

where h(x,y) is the translation invariant image pixel coor-
dinates and , x y  is the centroid of the object (all pixels 
with intensity value of 1) in the binary image.

Zernike basis functions and consequently Zernike 
moments are developed from these normalised images. 
Computing the Zernike basis functions and subsequent 
Zernike moments for an image requires mapping the 
image to reside in a unit circle with the origin at the 
centre of the image. Pixels outside a unit circle are not 
used in computing the moments. Thus, to ensure that 
all score and library image pixels are captured within 
the unit circle, the entire binary image is resized into a 
larger square image of dimensions with each side equal 
to 2 2 1/22( )x yn n+  where nx and ny are, respectively, one 
half of the number of x and y pixels. This larger image 
is padded on each side of the original image with pixels 
with intensity 0 for black to create a new image of the 
larger dimensions.

The polar value ρ and corresponding polar angle θ for 
any pixel (x,y) in polar coordinates is calculated as:
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Figure 6. Images for reference numbers library created to 
use in identifying recovered numbers.
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where (x,y) are the pixel coordinates of each pixel for the 
square image, ( , x y ) are the pixel coordinates of the centre 
of the image and d is half the dimension of the image.

Equations 9 and 10 map each pixel coordinates to the 
unit circle in polar coordinates. The radial polynomials 
[Rnm(ρ)] necessary for the determination of the Zernike 
basis polynomials are calculated using the polar value ρ 
and defined order n as shown in Equation 11:
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where n is a number of basis polynomials that define the 
order of Zernike moments, m is a positive or negative 
integer bound by the constraints n – |m| = even and |m| ≤ n.

The Zernike basis functions (polynomials) and the 
corresponding moments are determined from these real 
valued polynomials and the input images using Equations 
12 and 13:

	 ( ) ( ) ( ) ( )ρ θ ρ θ= =,  ,  expnm nm nmV x y V R jm 	 (12)

	 ( ) ( )ρ θ
π

= =

+
= + ≤∑∑ * 2 2

1 1
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N N

nm nm
x y

nA f x y V x y 	 (13)

where Vnm is the Zernike polynomial, Anm is the Zernike 
moment, f(x,y) is the intensity value of an image pixel 
with coordinates x,y, j = √–1 and ( )ρ θ* ,nmV (ρ,θ) is the complex 
conjugate of Vnm(ρ,θ).

The Zernike moment vectors are developed by concat-
enating the Zernike moments (Anm) at each order into a 
single vector. This is carried out for all score and numer-
ical library images. An image pixel can be recreated using 
the Zernike basis polynomial and the Zernike moments 
up to the defined order as shown in Equation 14.

	 ( ) ( )ρ θ
= =

=∑∑
 0 0

ˆ ,  ,
n n

nm nm
n m

f x y A V 	 (14)

where (̂ , )f x y  is a reconstructed pixel in the translated 
(centred) representation. The pixels added previously to 
ensure the original image is inscribed in a unit circle are 
removed, leaving the reconstructed image of the same 
size as the original image.

The process of extracting Zernike moments requires 
the definition of a finite order of Zernike basis (n) to 
be used in extracting Zernike moments from an image. 
Higher order Zernike moments are more susceptible 

to noise and thus undesirable for image representa-
tion.42 Conversely, higher number moments also better 
capture the finer details of an image and cannot totally be 
discarded. As such, it is necessary to determine an order 
of moments that will both adequately capture the char-
acteristics of the input image and yet be robust to noise. 
A good way of estimating such an order is by its recon-
struction error.36,38,39 This requires the comparison of the 
original input image to its reconstructed version from a 
set of Zernike moments at a specified Zernike polynomial 
order. The lower the reconstruction error, the better the 
order captures image features. The mean square recon-
struction error (ε) between the original image and its 
reconstructed versions at increasing orders is used as 
a comparative measure to determine this difference as 
shown in Equation 15:

	
( ) ( )

( )

2

1 1
2

1 1

, ˆ ,
 

,

N N
i j i ji j

N N
i ji j

f x y f x y

f x y
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= =
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 

∑ ∑
∑ ∑

	 (15)

where N is the number of pixels in the x and y directions.
As such, the difference between an image and its 

reconstructed version from a set of Zernike moments at a 
defined order can be used as a measure of the validity of 
the order as representative of the features of the original 
image. To determine the appropriate order, the contribu-
tion of each respective order moments to the reconstruc-
tion process is measured by the difference in its recon-
struction error from the next order (n) and this difference 
C(n) is computed as shown in Equation 16:36,38

	 C(n) = εn – 1 – εn	 (16)

The cumulative sum of these differences for an 
increasing order is used to estimate the orders that fully 
capture the image features.36 Examples of this process 
based on cumulative sum plots are shown in Figure 7 
for two library number images and a recovered number 
score image. Similar plots are obtained for other library 
and score images.

The insets in Figure 7 show the plots for the Zernike 
moment vectors at basis polynomial orders of 20 and 40, 
respectively, for a reference library number 2. Vectors 
such as these from each image are used in recreating the 
image and calculating the mean square errors. They are 
subsequently used for comparing the recovered images 
to the reference library images.

Figure 7 shows the image representation ability of 
Zernike basis polynomials from 1 through 50 determined 



I. Unobe et al., J. Spectral Imaging 8, a19 (2019)	 9

by the cumulative sum. The cumulative sum increases 
steadily until all major features have been captured and 
then it slowly increases, indicating little change in the mean 
square errors for consecutive orders and subtle features 
are now being included. Ultimately, there is a sudden 
increase at higher orders indicating all image features 
have been captured and higher order polynomials are 
adding non-feature related elements and distorting the 
reconstructed image. From the plot, this increase occurs 
at order 51 and thus, it can be deduced that beyond 
order 50, the reconstructed image is distorted and the 
Zernike moment vectors will contain non-feature related 
elements that may impair the classification.

Similarity measures
Fifteen similarity measures are used in this study to 
compare the Zernike moment vectors of the score images 
to those for 10 reference libraries made up of unaltered 
numbers. Zernike moment vectors are determined for 
each library image, to compare to the Zernike moment 
vectors of the score images. Several comparisons are 
made, one for each Zernike polynomial order from 15 
to 50 in steps of 5 for 8 sets of Zernike moment vector 
comparisons. Table A1 in the Appendix shows the simi-

larity measures used and their equations, each designed 
to define a perfect match between the two vectors as 
zero and increasing in value with a decrease in similarity.

All score images developed for a defaced number are 
evaluated irrespective of whether or not a recovered 
number can visually be recognised. Using all score images 
avoids the necessity of preselecting score images to 
compare and ensures that parts of a defaced number that 
may be partially reproduced in a range of score images 
are utilised in making the identification.

Data fusion
With 15 score images being compared with 8 sets of 
Zernike moment vectors across 10 libraries using 15 
similarity measures each, there is a need to determine a 
consensus across the resulting 18,000 (15 × 8 × 10 × 15) 
similarity values obtained. To achieve consensus, a high-
level data fusion approach is applied. Multiple fusion 
rules are also used where each rule is applied to extract a 
consensus value from all 18,000 similarity values relative 
to each number identification possibility. These rules are 
sum, geometric mean, harmonic mean, median, L-2 norm, 
L-1 norm, truncated geometric mean and truncated 
harmonic mean. Most rules are applied twice, once to 

Figure 7. Cumulative mean square error difference for an increasing order of Zernike polynomi-
als shown for two reference library numbers and a recovered number as examples. See text for 
description of insets.
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raw values and another time to rank values. Descriptions 
of the rules are given in Appendix I. Briefly, all similarity 
values for a given defaced number are assembled into 
an 18,000 × 10 matrix where the columns correspond 
to the number identification targets 0 to 9. Each row 
is normalised to unit length to remove magnitude vari-
ations between the values from respective similarity 
measures. Each fusion rule is applied to the columns of 
this matrix as well as to the matrix after transformation 
to rank values. The smaller the fusion rule value for a 
particular column, the more similar the defaced number 
is to the corresponding target library number. By using 
normalised and rank values, there are 14 fusion rules.

The defaced number is matched to the target number 
that is most consistently (eight of the fourteen rules, i.e. 
majority vote) ranked lowest across the fusion rules and 
whose sum across the ranked fusion rules is lowest. A 
value “NC” is assigned if no particular rank has a majority 
across the fusion rules.

Algorithms
Algorithms for lock-in analysis, PCA, Zernike moments, 
similarity measures and fusion rules were written by the 
authors using MATLAB 9.2.

Results and discussion
Stainless steel plate with numbers
A lock-in frequency of 50 mHz was selected to be used 
in pulsing the thermal energy through the sample. This 
lock-in frequency was selected using phase difference 
plots developed using the procedure in References 9 
and 18. Figure 8 shows the phase difference plots for 
the measured defaced areas. The phase differences were 
calculated as the difference between the phase values 

within the defaced region where the number previously 
existed and average phase values of a clean non-stamped 
area for various lock-in frequencies. From this figure, it 
can be observed that while there is no blind frequency 
for the numbers, suboptimal frequencies exist that give 
the least contrast range from 250 mHz to 1000 mHz 
where the phase differences oscillate in a range of less 
than 0.2 rad. Phase differences increase afterwards 
allowing for the selection of optimal frequencies for all 
the defaced numbers observed to range from 50 mHz to 
15.6 mHz for this sample.

In selecting a modulation frequency to use in the 
experiments, the depth of thermal diffusion was also 
taken into consideration. A function of the modulation 
frequency, the depth of thermal diffusion is the depth to 
which the phase images capture characteristics within an 
object. With decreasing modulation frequency, the depth 
of thermal diffusion increases. The sample used in these 
experiments is just over 6 mm after defacing and the 
50 mHz modulation frequency has a thermal diffusion 
length of 4 mm in stainless steel, which is still within the 
limits of the sample thickness. As a result, 50 mHz was 
used as the modulation frequency for the experiments 
carried out.

Figure 9 shows the mean infrared thermal image for 
one pulse cycle of a clean stainless steel surface left intact 
with no number stamped into it. The image is comparable 
to those shown in Figure 10 for the areas around the 

Figure 8. Phase difference plots for each defaced number 
on stainless steel sample.

Figure 9. Raw thermal image of a clean surface (axes 
represent the pixel coordinates and the colour bar shows 
the temperature range (° C) of the sample).
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defaced numbers (the boxed in areas in Figure 5). As with 
the sample at room temperature, the numbers removed 
cannot be uniquely distinguished from a clean surface in 
the infrared thermal images.

Figures 11 and 12 show phase images over a single 
pulse cycle for the clean region and defaced numbers, 
respectively. Although the phase images have effectively 
removed such unwanted features such as inhomoge-
neous illumination as well as surface radiation and local 
emissivity variations from the images, it is still impossible 
to identify the serial numbers in Figure 12.

Score images developed separately from datasets of 
the phase and amplitude images were visually inspected 
to determine which dataset best reproduces the defaced 
number. This process showed amplitude images for 
defaced 6, 2 and 0 and phase images for defaced 5 to 
be best. This difference is likely caused by local changes 
in the thickness of the paint layers due to the manual 
process utilised in applying the paint. A relatively thicker 
paint layer over a number like the defaced 5 would mean 
the phase image would contain more information about 

the defaced 5, because phase images can minimise the 
environmental background interference and capture sub-
surface discontinuities at greater depths than possible 

Figure 10. Raw thermal images of areas around defaced 
numbers: a) six, b) two, c) five and d) zero (axes represent 
the pixel coordinates and colour bars show the tempera-
ture range (° C) of the sample).

Figure 11. Phase image of a clean surface (axes repre-
sent the pixel coordinates and the colour bar shows the 
degree of phase shift).

Figure 12. Phase images of areas around defaced num-
bers: a) six, b) two, c) five and d) zero (axes represent the 
pixel coordinates and the colour bar shows the degree of 
phase shift).
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with the amplitude images. Thus, if the thickness of the 
paint layer for the defaced 5 is significantly thicker than 
for the defaced number 2, the phase image of the 5 
would better characterise the initial stamped number in 
this area.

Table 1 shows the percent variance of information 
explained in each PC. As by convention, PC1 explains the 
most amount of variance and the other PCs explain some 
of the remaining variance present in decreasing order. 
The shaded cells indicate the PC where the defaced 
number was best reproduced for each dataset.

Figure 15 presents the score images from the clean 
undefaced region. PC1 is responsible for 99 % of the vari-
ance within the images. PC2 to PC15 are responsible for 
the remaining 1 % of the variance. The score images show 
no identifiable structure although with some random 
high intensity areas due to surface roughness of the 
sample. This is expected, as no crystalline deformation 
exists within the sample in this region.

Figure 16 shows the score images from the amplitude 
images of the area around the number “6”. The first prin-
cipal component PC1 is responsible for 98 % of the vari-
ance and PC2 to PC15 for the remaining 2 %. However, 
unlike for the clean area, one of the score images (PC13) 
shows defined intensity contrast localised around the 
section where the number previously existed. This PC 
accounts for only 0.0003 % of the variance across the 
phase images. This can be attributed to how relatively 
small the phase shift due to thermal gradient differences 
in the zone of plastic strain is compared to other sample 
features within the thermal depth range, highlighting the 
robustness of PCA in recognising and characterising such 
small variances across the pixels.

Figure 17 similarly shows the refolded score images 
(contrast adjusted) from PCA of the regions around the 
numbers “2”, “5” and “0”. PC11 presented in Figure 17a 
shows some contrast in the region where the number 
existed. This PC accounts for only 0.003 % of the variance. 
Likewise, for the defaced 5, PC10 shown in Figure 17b 
shows some contrast in intensity allowing for possible 
identification of the number that was defaced.

PC1, accounting for 49 % of the variance, shows inten-
sity contrast to possibly identify the number 0 that was 
defaced. This can be seen in Figure 17c. The relatively 
larger value in the variance accounted for in the PC 
that reproduces this number is due to the fact that the 
number was initially stamped deeper than the others 
and so had a more extensive zone of plastic strain. This 
allowed for the thermal gradient difference in this region 
to account for a larger percentage of the variance in the 
thermal depth range.

Also, the difference in the PC best identifying the 
thermal gradient variation and reproducing the defaced 

Figure 13. Filtered phase image of a clean surface (axes 
represent the pixel coordinates and the colour bar shows 
the filtered phase values).

Figure 14. Filtered phase images of areas around defaced 
numbers: a) six, b) two, c) five and d) zero (axes repre-
sent the pixel coordinates and the colour bar shows the 
filtered phase values).
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number can be attributed to discrepancies in the surface 
conditions around each number from the machining 
process used in removing them as well as some variation 
in the depth of stamped marks and consequently the 
depth of the zone of plastic strain.

Although hard to visually observe, PCA, in projecting 
the phase and amplitude images into different orthog-
onal directions, reproduces the variation in degree of 
phase shift between the input images independent of 
other linear variations in a single score.

The binarised score images used in the image classifica-
tion process used to verify the recovered numbers are 
shown in Appendix B.

Figure 18 images the results of each fusion rule applied 
across the merits from comparing the recovered number 

“6” to each digit. This image gives a visual representation 
of the results used to independently verify the recovered 
numbers. From the figure, it is seen that the process 
works efficiently in matching the recovered number to a 

“6”, consistently having the lowest rank across the fusion 
rules. Table 2 shows the final results with using both 
majority vote and sum across the fusion rules. This table 
reiterates the information in Figure 18 in showing that 
there is an overall consensus across all the fusion rules 

matching the recovered number to a 6. Again, in order 
to correctly match a defaced number to a target number, 
the defaced number must be ranked lowest by a majority 
vote of the fusion rules and have the lowest sum of 
the ranked fusion rule values. Otherwise, the defaced 
number is non-identifiable.

The process is similarly efficient in matching the other 
recovered numbers to their corresponding digits as 
shown in Tables 3–5. However, as seen in Table 4, for the 
identification of the defaced “5”, there is an increase in 
the sum across the fusion rule ranks. This, as can be seen 
in the visual representation of the fused merits across 
the fusion rules in Figure 19, is a result of some of the 
fusion rules misclassifying the number, possibly due to 
some score images being misidentified. This highlights 
the necessity of utilising a consensus among the fusion 
rules. Both of the consensus methods applied correctly 
matched the recovered number to the right digit despite 
the contrasting results from some fusion rules.

Classification results are not shown for the clean area 
as it is known that this area had no number stamped 
into it and thus attempting to classify its score images to 
possible number digits (0–9) will result in misleading clas-
sifications of the dataset to a particular digit.

  Percent variance (%)
PC Clean area Six Two Five Zero
1 99.0328 98.5497 82.2910 99.8550 48.6725
2 0.5639 1.0724 16.8583 0.0820 8.9673
3 0.2580 0.2219 0.7022 0.0375 5.5631
4 0.1152 0.0993 0.0624 0.0125 5.4441
5 0.0108 0.0312 0.0283 0.0060 4.7530
6 0.0064 0.0142 0.0162 0.0017 4.4526
7 0.0027 0.0052 0.0127 0.0013 3.7963
8 0.0023 0.0027 0.0074 0.0010 3.6741
9 0.0019 0.0010 0.0055 0.0008 3.2420
10 0.0014 0.0009 0.0046 0.0006 2.8108
11 0.0012 0.0006 0.0034 0.0004 2.5601
12 0.0009 0.0004 0.0029 0.0004 2.2362
13 0.0008 0.0003 0.0021 0.0003 1.9693
14 0.0007 0.0002 0.0016 0.0002 1.1534
15 0.0006 0.0002 0.0016 0.0002 0.7053

Table 1. Percentage of variance in each PC for defaced numbers on the 
stainless steel sample (shaded boxes represent the PC where the respective 
numbers were best reproduced).
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Figure 15. Score images for clean surface (axes represent the pixel coordinates and the 
colour bar shows the range of score values).



I. Unobe et al., J. Spectral Imaging 8, a19 (2019)	 15

Figure 16. Score images for area around defaced number six (axes represent the pixel coordinates 
and the colour bar shows the range of score values).
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Conclusion
Using a non-destructive process, the object of the study 
was to determine the possibility of recovering defaced 
serial numbers and independently verifying the authen-
ticity of the recovered numbers. The developed process, 
successfully employed the LIT technique in combination 
with PCA, to effectively recover the defaced numbers 
by utilising the thermal gradient differences in the 
zone of plastic strain exposed when the numbers were 
mechanically removed. This process is quite general and 
should be applicable across different items including 
firearms, automobiles etc. To verify the identification of 
the recovered numbers, invariant features are extracted 

Figure 17. Score images showing recovered numbers: a) two, b) five and c) zero (axes represent the pixel coordi-
nates and the colour bar shows the range of score values).

Figure 18. Image of fused measures from all fusion rules 
for the recovered number 6 (See Appendix for rule defini-
tions. Colour bar shows rank from 1 to 10).

Target number 0 1 2 3 4 5 6 7 8 9
Majority vote  6   9  3   7  10  2  1   8  4  5
Sum 77 120 42 101 140 28 14 115 57 76

Table 2. Fusion of similarity measure values for area around defaced number six.

Target number 0 1 2 3 4 5 6 7 8 9
Majority vote  5   0  1   8  10  2  4 NC* NC*   7
Sum 72 115 14 112 138 36 52 87 38 106

*NC indicates there was no consensus rank for the digit across the fusion rules

Table 3. Fusion of similarity measure values for area around defaced number two.

Target number 0 1 2 3 4 5 6 7 8 9
Majority vote NC*   9  3  7  4  1  5  2   8  10
Sum 74 120 30 96 68 22 70 32 118 140

*NC indicates there was no consensus rank for the digit across the fusion rules

Table 4. Fusion of similarity measure values for area around defaced number five.
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from the images using Zernike moments. These invar-
iant features are then compared to those of a clean 
number library. The comparison is done using several 
similarity measures to capture different possible char-
acteristic patterns within the vectors. As such, it was 
pertinent to achieve a consensus among the measures 
and several fusion rules are used to achieve consensus 
to the library number. Such a process ensures inde-
pendence from human bias in the identification of the 
recovered number.
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Appendix A
Similarity measures
Correlation coefficient
Pearson correlation
This is a measure of the linear relationship between two 
vectors. A perfect value of 1 means that both vectors 
have a perfect correlation between them and 0 means 
there is no correlation between them. In keeping with the 
convention adopted for this study, the correlation coef-
ficient is subtracted from 1 so that a smaller value will 
indicate a higher correlation between the vectors.
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Spearman correlation coefficient
For the Spearman correlation, the values within each 
vector are first ranked before the correlation is calculated 
as above.

Euclidean distance
Vector to vector Euclidean distance
The Euclidean distance is a measure of the distance in 
space between two vectors. This is determined as the 
square root of the square of the difference between 
corresponding points in both vectors being compared. 
The smaller the value of the resulting merit, the higher 
the degree of similarity between them.

	 ( )( )TED = − −l s l sx x x x 	 (A2)

Vector outer product Euclidean distance
This is similar to Euclidean distance except the outer 
vector products are used for the comparison ( T=l l lX x x  
and T =s s sX x x ). The outer products are unfolded to form 
a vector and Equation A2 is used.

Angle between vectors
This similarity measure is determined as the cosine of the 
angle between two vectors for a shape comparison. The 
value is subtracted from 1 for a smaller value indicating a 
higher degree of similarity between vectors.

	
T

cos 1θ = −
l s

l s

x x

x x
	 (A3)

Square of the angle
This measure involves taking the square of the value for 
the angle between the vectors and then subtracting from 
1 for a smaller value for a higher degree of similarity.

Determinant
This similarity measure is a measure of the space size 
formed by two vectors and calculated by Equation A4. 
The smaller the resulting value, the smaller space and 
hence, the more similar the vectors.
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Unconstrained Procrustes analysis
This measure is a transformation process that, as used 
in this study, determines how much transformation 
is required to make the matrix formed by one outer 
vector product similar to another outer vector product. 
Transformation occurs in the form of rotation, dilation 
and translation of each vector to make them match. A 
Frobenius norm (F) of the matrix difference between the 
transformation matrices for the two vectors is used as a 
final measure of the similarity between them. This value 
represents the matrix from the difference between the 
transformation matrices as a scalar with a smaller value 
indicating a higher degree of similarity.

	 Xl = XsFsl	  

	 Fsl = Xs
+Xl	  

	 + s
s 4

s

X
X = 

x
	 (A5) 

	 Fss = Xs
+Xs	  

	 F = Fsl – FssF	

where F is a transformation matrix necessary to make 
Xs most similar to Xl; Fsl – FssF is the Frobenius norm for 
the matrix difference between the two transformation 
matrices Fsl and Fss calculated as the square root of the 
sum of squares of each value in the difference matrix.

Four similarity merits are obtained using Procrustes 
analysis in this study. Two by using the mean centred 
outer products of each of the vectors (Xl and Xs) being 
compared to define the transformation matrix and 
another two by not mean centring the outer product 
matrices before determining the transformation matrices. 
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With mean centring, translation correction is included 
and without mean centring, only rotation and dilation are 
evaluated.

Constrained Procrustes analysis
This transformation measure defines individually the 
degrees of dilation and rotation required after translation 
to make the two vectors similar. As with unconstrained 
Procrustes analysis, the Frobenius norm is used to deter-
mine a final scalar similarity merit, a smaller value indi-
cating a higher degree of similarity.

T T= = Σsl s l sl sl slX X X U V  
T=sl sl slH u v  

	 = = ∑T T ss s s ss ss ssX X X U V 	 (A6) 
= T

ss ss ssH u v  
H = Hsl – HssF

where U is the eigenvectors of matrix XXT, u is the first 
eigenvector in U, Σ is the diagonal matrix of singular 
values, V is the loading matrix = eigenvectors of matrix 
XTX and v is the first eigenvector in V.

Two possible sets of similarity merits are obtained, with 
one set involving mean centred outer product arrays 

(translation is included) and the other set without mean 
centring (only rotation and dilation).

Mahalanobis distance
This is a distance measure that determines the distance 
of a vector from a space formed by an array of vectors. 
To use this measure as a distance measure between two 
vectors, the pseudo-inverse of the outer product of one 
of the vectors is taken as the usual covariance matrix 
used in the Mahalanobis distance estimation. A smaller 
merit value in this measure indicates a smaller distance in 
space, and hence a higher degree of similarity between 
the vectors.

	 ( ) ( )TMD += − −s l s s lx x X x x 	 (A7)

A second similarity merit is obtained using the 
Mahalanobis distance measure defined in Equation A7 
by exchanging the outer vector product matrix Xs for Xl.

Table A1 gives a summary of these similarity measures 
and their corresponding equations.

Fusion rules
The equations below show the fusion rules to combine 
the n = 18,000 similarity values into a single defining 

Similarity measurea Equationb

Correlation coefficient (2)  ls

l s

S
CC

S S
=

Euclidean distance (2) ( )( )TED = − −l s l sx x x x

Angle (2)
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l s l s

s
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x

Procrustes analysis (PA) (4) F = Fsl – FssF

Constrained PA (2) H = Hsl –HssF

Mahalanobis distance (2) ( ) ( )+= − −
TMD s l s s lx x C x x

aValues in parenthesis indicate the number of variations 
bSee respective descriptions for definitions of equation 
xl = feature vector of reference library image 
xs = feature vector of score image

Table A1. Similarity measures used.
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value. In these equations Si denotes each similarity value 
for the ith measurement where i varies relative to the 
particular Zernike moment vector score image and library 
font. Table A2 shows the notations used in Figures 16 
and 17 for the fusion rules.
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The Si values are either raw values (normalised as 
described in the Similarity measures section) or rank 
values. Using raw and rank values makes for 12 fusion 
rules. Two additional rules are only used on the raw 
normalised values. These are:
1)	Truncated geometric mean rule: the truncated 

geometric mean utilises a defined percentage of 
the lowest values to determine the geometric mean 
instead of using all values. The lowest 75 % of values 
are used in this study.

2)	Truncated harmonic mean rule: this rule is similar to 
the truncated geometric mean except it utilises the 
harmonic mean of the truncated values.

Rule
Normalised raw 
values notation

Rank values 
notation

Sum S SR
Median M MR
L-2 norm L2 L2R
L-1 norm L1 L1R
Geometric mean GM GMR
Truncated geometric mean TrGM —
Harmonic mean HM HMR
Truncated harmonic mean TrHM —

Table A2. Fusion rule notation for figures.
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Appendix B: Binarised score images

Figure B1. Binarised score images for clean surface.
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Figure B2. Binarised score images for area around defaced number six.
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Figure B3. Binarised score images showing recovered numbers: a) two, b) five and c) zero.


