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Different types of raw cotton were investigated by a commercial ultraviolet-visible/near infrared (UV-Vis/NIR) spectrometer (210–2200 nm) as 

well as on a home-built setup for NIR hyperspectral imaging (NIR-HSI) in the range 1100–2200 nm. UV-Vis/NIR reflection spectroscopy reveals 

the dominant role proteins, hydrocarbons and hydroxyl groups play in the structure of cotton. NIR-HSI shows a similar result. Experimentally 

obtained data in combination with principal component analysis (PCA) provides a general differentiation of different cotton types. For UV-Vis/NIR 

spectroscopy, the first two principal components (PC) represent 82 % and 78 % of the total data variance for the UV-Vis and NIR regions, respec-

tively. Whereas, for NIR-HSI, due to the large amount of data acquired, two methodologies for data processing were applied in low and high lateral 

resolution. In the first method, the average of the spectra from one sample was calculated and in the second method the spectra of each pixel were 

used. Both methods are able to explain ≥ 90 % of total variance by the first two PCs. The results show that it is possible to distinguish between 

different cotton types based on a few selected wavelength ranges. The combination of HSI and multivariate data analysis has a strong potential in 

industrial applications due to its short acquisition time and low-cost development. This study opens a novel possibility for a further development 

of this technique towards real large-scale processes.
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Introduction
Hyperspectral imaging (HSI) is an imaging technology that 
combines spatial information with spectroscopy. It is a 
fast and non-destructive method, which has evolved into 
a powerful analysis tool for product inspection. Thereby, 

spatial images with very detailed spectral information for 
each pixel of an object are collected simultaneously.1–3 
In the past, spectroscopic applications as well as HSI in 
the ultraviolet-visible (UV-Vis) and near infrared (NIR) 
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range are more frequently found in the textile research 
and in industrial applications.4 In textile research, cotton 
plays a dominant role among textiles, since cotton is the 
most important naturally occurring raw material for the 
production of fabrics.5,6 More than 34 million hectares 
of land are used to grow cotton, and around 100 million 
households worldwide are engaged in cotton produc-
tion.7 Cotton is considered as a key resource in the textile 
industry and accounts for about 30 % of all fibres used in 
this sector.8 In recent years, the increase in quality and 
processing requirements has led to the introduction of 
modern techniques for processing and quality control.9–12 
Nevertheless, distinguishing between different cotton 
species is still a demanding task.

Several detection methods have been developed and 
applied to identify and classify different cotton vari-
eties.6,13 Most of them are off-line techniques such as 
thermogravimetric analysis and optical spectroscopy.14–16 
Only little information is expected in the visible range, 
since most raw cotton and residuals are reflective (or 
transparent).17,18 Valuable information can be expected 
in the NIR region from characteristic molecular vibra-
tion, e.g. CHn and OH groups of cotton which are omni-
present.19 Unfortunately, the overall sensitivity for small 
variations of the sample as well as for small amounts of 
contaminations in the NIR range is low and they are hard 
to detect.20,21 Therefore, numerous studies in the NIR 
region used a combination of spectroscopy and chemo-
metric modelling.19,22–28

With a NIR-HSI system, a complete optical spectrum 
with innumerable spectra are collected at all image 
pixels. This is in contrast to multispectral systems, such 
as red-green-blue (RGB) cameras, where only a limited 
number of wavebands are collected.29,30

Most HSI applications have been focused on remote 
sensing systems, such as satellites or aircraft, to gather 
information for agricultural, geological inspections and 
military purposes. Nowadays, HSI is evolving into a stan-
dard for inline and online inspection in process analytics 
and quality control. Prominent technical applications can 
be found in quality control for medicine, food and agricul-
tural products.29,31,32

In industrial applications, an HSI system is based on a 
combination of a pushbroom scanner and a conveyor belt. 
The pushbroom scanner is fixed over the conveyor belt 
as shown in Figure 1. Such inspection systems require 
a minimum of sample preparation and are able to scan 
several samples swiftly with high spectral resolution.33 
Here, the pushbroom scanner captures the complete 
spectral information line by line. The data is collected 

with the camera placed perpendicular to the conveyor 
belt. As the conveyor belt moves, images are continu-
ously captured by the pushbroom scanner, resulting in a 
three-dimensional (3D) data matrix with dimensions x, y 
and λ and is often referred to as hypercube.34

For cotton research, HSI was used in the UV-Vis range 
to detect foreign matter with differentiation and classi-
fication of lint in cotton samples.13 The results showed 
great potential for the use of an HSI system for the clas-
sification of foreign matter.4,11,12

In this study, we used optical reflection spectroscopy 
in the UV-Vis/NIR range as well as HSI in the NIR range 
for the differentiation of cotton sample sets. For both 
methods, a chemometric model was developed that is 
based on principal component analysis (PCA). Using this 
model, we were able to distinguish between the different 
cotton types of our sample sets.

Materials and methods
UV-Vis/NIR spectroscopy
Reflectance spectra of the samples were recorded in 
the range from 210 nm to 2200 nm using a UV-Vis/NIR 
spectrometer (Lambda 1050, PerkinElmer Ltd). It was 
used to compare the data from the NIR-HSI and validate 
to another device. The UV-Vis/NIR spectrometer was 
equipped with an Ulbricht sphere covered by polytetra-
fluoroethylene (PTFE) to acquire data in diffusion reflec-
tion mode with two detectors: one is an indium gallium 
arsenide (InGaAs) detector and the other a photomul-
tiplier inside the sphere. The samples were placed on 
this rear of the sphere, and a diffuse scattering PTFE as 
a white reference disc was placed behind the sample. 
The complete measuring aperture area is approximately 
4.9 cm2. From every cotton sample disc, a spectrum was 
acquired on each side. In total, three discs were measured 
for each sample and, thus, for each cotton sample disc, 
six spectra were recorded.

NIR hyperspectral pushbroom online imaging 
system
Figure 1A shows the setup of the HSI system used. 
The hyperspectral system is based on a pushbroom 
imager connected to a Xencis, Xeva 2.5 – 320 camera 
equipped with a mercury cadmium telluride (HgCdTe) 
detector of 8 nm spectral resolution with a 30 µm slit 
width. Two halogen lamps illuminate the sample area. 
PTFE is used as a white reference, while the dark refer-
ence is acquired by imaging without any light exposure 
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to the sensor. Figure 1(B–D) illustrates the principle 
and workflow for HSI. Figure 1B shows complete spec-
troscopic information acquired for each line. Thus, a 
continuous line-by-line collection of spectral informa-
tion forms a two-dimensional (2D) image as shown in 
Figure 1C. It is also possible to extract a single spec-
trum from a given pixel or point in the 2D image as 
shown in Figure 1D.

Samples
Figure 2 shows five types of raw cotton and one hemp 
sample which were investigated. The samples are organic 
raw material cotton (RoB), hemp plant from China (HC), 
recycled cotton (RcO), standard raw material cotton (RoSt), 
recycled organic bright cotton (RcBH) and mechanically 
cleaned cotton sample (CLN). Three samples of the afore-
mentioned cotton types were collected from the bulk, 
amounting to 0.75 g from each sample. The samples were 
pressed at 10 tons for 2 min by a hydraulic press into a 
disc shape so that they had the same physical properties. 
The hydraulic press was cleaned after each sample to 
reduce the chance of any impurities.

Figure 1. A) Setup of an HSI system based on the pushbroom concept. B) HSI scanning 
principle. C) HSI generated immediately from the scanning of a cotton sample disc. D) 
NIR spectrum for one single pixel extracted from the image.

Figure 2. Raw cotton sample discs.
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Data collection and pre-processing of 
hyperspectral data
The following two methods for data pre-processing are 
described, resulting in low and high lateral resolution. 
Matlab (MATLAB 9.2.0, Mathworks, MA, USA) scripts 
were written for pre-processing of the hyperspectral data 
cube.

Figure 3 shows the workflow for calculating the mean 
spectrum of each sample. The hyperspectral image is 
collected by moving any cotton sample disc at a constant 
speed, approximately 50 spectra were collected manu-
ally within the indicated area of interest, as shown in 
Figure 3A (marked as dashed line) and plotted as shown 
in Figure 3B. The average of these spectra is calculated 
and shown in Figure 3C.

Figure 4 shows the workflow for the second pre-
processing method. The hyperspectral image is captured by 
moving the 18 cotton sample discs at a constant speed. To 
differentiate between signal and background, a distinction is 
first made between the respective spectral characteristics.

For this purpose, two parallel planes are fitted into 
each spectral channel, one for the background and one 
for the samples. The distance between these planes is 
then selected as the parameter for the spectral differ-
ence between the sample and the background. The colour 
channel with the highest value is used as a mask for all 
other colour channels. Half of this difference is set as the 
threshold value. All lateral points of the colour channel 
whose intensity value is above this threshold value are 
classified as background and removed. This clipping mask 
is applied to the entire hyperspectral data cube. The 
remaining data corresponds to the spectral contributions 
from the samples. These are converted from the 3D hyper-
spectral data set into a 2D format by joining the lateral 
points of the X and Y dimensions. This creates a matrix in 
which each row corresponds to a pixel with a complete 
spectrum. This matrix is used as input for the PCA.

Figure 4A shows the image obtained through the hyper-
spectral camera. The colour channel with the highest 
differential value is displayed in Figure 4B. Figure 4C 
shows a single colour channel of the cotton sample discs’ 
hyperspectral data cube after removing all lateral compo-
nents associated with the background, the removal of 
outliers like dead pixels or cosmic events, and the appli-
cation of a PCA filter, which removes all contributions of 
higher PCA components. The PCA filter works as follows: 
the first three of the resulting PCs explain about 88 % 
of the variance. The 4th and higher components, while 
contributing less than 7 % to the overall variance, contain 
mainly noise and were therefore discarded for further 
analysis. The remaining 5 % of the total variance is found 
within the residuals, and does not contribute significant 
information. Figure 4D shows an image, where the RGB 
value corresponds to scores of the first (R), second (G) 
and third (B) components.

In the next step, all score values that are 90 % similar 
to another score in all the main components considered 
are removed from the data set. From the remaining score 
values a reduced data set with the load values of the 
considered main components was generated. The reduced 
data set is then converted back into a 3D hyperspectral 
data cube by separating the combined lateral information. 
Figure 4C shows the reduced data as lateral information for 
one spectral channel. The principal component analysis of 
this data again shows a significant grouping of the different 
types of cotton. In the end, approximately 120,000 spectra 
remain from the initially obtained 1.7 million spectra.

Data handling and software
The UV-Vis/NIR spectra are recorded with the Lambda 
1050 UV WinLab software from PerkinElmer. The NIR 
hyperspectral pushbroom images are analysed by the 
Evince 2.7.9 software from Prediktera. PLS Toolbox 8.5.1 
(Eigenvector Research, Inc., USA) is used for the data 

Figure 3. A) HSI of a cotton sample disc with area of interest (dashed line) with a diameter of 2.5 cm. B) 
Spectra extracted from the selected area. C) Average spectrum of all spectra shown in B).



M. Al Ktash et al., J. Spectral Imaging 9, a18 (2020)	 5

processing and analysis. Lighting conditions may vary 
between the samples and even within the samples across 
the scan line. A common way to calculate this effect is to 
convert measured raw spectra to reflectance spectra by 
the following formula:29,35

0
  

log /
  

sample dark

reference dark

I I
Reflectance R R

I I
-

=-
-

where R and R0 represents the transmitted and incident 
intensity. Isample is the intensity of the original image data, 
Idark is the intensity of the dark current image data and 
Ireference is the intensity of the white reflectance image. 
Pre-processing of the mean centre, smoothing (Savitzky–
Golay) with filter width 15 and polynomial order one, and 
generalised least squares (GLS) are applied to the data. 
GLS is used to achieve an efficiency by transforming the 
variance covariance matrix into a homoscedastic one.36 It 
works as a filter that calculates the differences between 
the samples. The differences are considered as interfer-
ence or clutter and GLS aims to reduce these interfer-
ences.36–38

Results and discussion
UV-Vis/NIR spectroscopy
Figure 5A shows UV-Vis/NIR spectra (210–2200 nm) 
from all samples. Six spectra were recorded for each 
cotton sample type, three on each side. As expected, the 

spectra show a high similarity. All spectra show the stron-
gest reflectance at 280 nm which can be attributed to 
proteins on the samples, see Table 1.17 In the visible range 
from 400 nm to 750 nm, the spectra do not show any 
distinct features since most of the raw cotton is reflec-
tive. In the NIR region, several spectral features can be 
observed. Dominant contributions are found at 1500 nm, 
1933 nm and 2100 nm corresponding to the functional 
groups CH, ROH and OH, respectively.

Due to the high similarity of the spectra, a differenti-
ation of the samples is demanding. As a consequence, 
PCA is used to further differentiate the samples and was 
applied for processed spectra.

The processing of spectra is described in the Materials 
and methods section. Figure 5B shows the scores plot of 
the first two principal components PC1 and PC2 for the 
UV-Vis region (210–1100 nm). The PCA model explains 
70.1 % and 82.3 % of the spectral information with the 
first two PCs, respectively. The scores plot shows that 
PC1 and PC2 are sufficient to separate all samples. In this 
representation, the hemp (HC) sample shows the most 
distinct separation from the cotton group, as expected. 
Figure 5C shows the corresponding loadings plot for 
PC1 and PC2. The most significant differences between 
those loadings are found in the regions from 210 nm to 
350 nm and from 450 nm to 700 nm. In the UV range 
(210–350 nm), the strongest influence on PC1 is found 
at 280 nm, 300 nm and for PC2 at 290 nm. They can be 
assigned to proteins and amino acids (see Table 1).17 The 

Figure 4. A) Hyperspectral raw imaging of 18 cotton sample discs with a 
diameter of 3.1 cm. B) Image of the colour channel with the highest variance 
between cotton disks and background. C) Images after subtraction of the 
background, removal of outliers and application of filters. D) Image of RGB 
value corresponding to scores of the first (R), second (G) and third (B) compo-
nents.
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contributions in the visible range (450–700 nm) show 
a maximum/minimum at 680 nm, it can be assigned to 
the colour of the RcO samples (see also the inset in 
Figure 5A).

Figure 5D shows the scores plot of the first two 
principal components PC1 and PC2 for the NIR region 
(1100–2200 nm). The PCA model explains 63.5 % and 
78.0 % of the spectral information with the first two PCs, 
respectively. The scores plot shows that the first two PCs 
are sufficient to separate all samples clearly from one 
another in the NIR range. In the scores plot, the hemp 
(HC) and CLN sample shows the most distinct separation 
from the cotton group.

Figure 5E shows the loadings plot for PC1 and PC2. The 
most significant differences between those loadings are 
found in the regions of 1100–1200 nm, 1350–1500 nm, 
1600–1700 nm and 1850–2100 nm. In the NIR region 
(1100–2200 nm), several spectral features are variable 
which are assigned to the hydrocarbons and hydroxides 
oscillation (see Table 1).17

With UV-Vis/NIR, a separation of the analysed cotton 
sample discs has been successfully demonstrated. 
However, the large deviations between PC1 and PC2 are 
mainly found in the UV-Vis and NIR regions. Therefore, 
the application of an online method for characterisation 
is the most suitable for these spectral regions.

NIR hyperspectral imaging
Two data processing techniques were applied to the NIR 
hyperspectral images to calculate PCA models. As before, 
three samples of each raw fibre were analysed. The setup 
for HSI as well as for determination of the spectra from 
the hyperspectral data matrix is described in the Materials 
and methods section.

In the first method, the mean value of the spectra 
was calculated for each cotton sample disc. A total of 

six spectra are determined from the HSI data for each 
cotton sample type.

Figure 6A shows hyperspectral NIR spectra in the 
range from 1100 nm to 2200 nm. The most dominant 
contributions are observed around 1525 nm, which can 
be attributed to the presence of OH groups. Four weaker 
peaks are observed around 1340 nm, 1790 nm, 1955 nm 
and 2117 nm, their assignment is given in Table 2.20

The PCA of these spectra explains 93.7 %, 97.0 % or 
98.3 % of the spectral information with the first two, 
three or four PCs, respectively. Figure 6B shows the 
results for the first three PCs. In the scores plot it can be 
seen that the first three PCs are sufficient to separate all 
samples clearly from one another.

Figure 6C shows the loadings plot for the first three 
PCs. In the range from 1340 nm to 1663 nm the reflec-
tance around 1508 nm can be assigned to the presence 
of ROH (see Table 2). In reflectance in the range from 
1789 nm to 2100 nm, 1973 nm can be assigned to the 
OH group. The contribution at approximately 2270 nm is 
due to CH.39,40

In the second method, several thousand spectra from 
every cotton sample disc were used to calculate the PCA 
model. The pre-processing and workflow of the spectra 
from the hyperspectral data matrix is described in the 
Materials and methods section. Figure 7A presents exam-
ples of hyperspectral NIR spectra from a single pixel of 
each of the six cotton types in the range 1100–2200 nm.

The PCA of these spectra explains 86.0 %, 88.2 % or 
89.0 % of the spectral information with the first two, 
three or four PCs, respectively. Figure 7B shows the 
results for the first three PCs, the first three PCs are 
sufficient to separate all samples from one another. A 
clear separation is observed for RoB and CLN, while 
the HC, RoSt, RcO and RcBH are slightly overlapping. 
Nevertheless, these samples can be separated only if 

Reflectance (nm) Functional groups References
280 nm Protein and amino acids 17
1210 nm CH2, CH 39, 40
1375 nm CH3 39, 40
1480–1580 nm H2O, ROH, CH 39, 40
1775 nm CH3, CH2 39, 40
1933 nm H2O, ROH 39, 40
2100 nm ROH 39, 40
2275 nm CH3, CH2, CH 39, 40
2340 nm CH3, CH2, CH 39, 40

Table 1. UV-Vis/NIR reflectance maxima.
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any one pair, e.g. HC and RoSt, is included in a separate 
model (data not shown). Figure 7C shows the load-
ings plot of the first three PCs. Overall, the loadings 
are comparable with the loadings shown in Figure 6C, 
except a change of the sign. In the range from 1350 nm 

to 1700 nm, the reflectance around 1550 nm can be 
assigned to the presence of ROH (see Table 2). The 
reflectance in the range from 1800 nm to 1990 nm can 
be assigned to OH groups. The signal around 2302 nm 
is due to CH.39,40

Figure 5. A) UV-Vis/NIR spectra of cotton sample discs including one HC sample in the 
wavelength range 210–2200 nm. Upper left: image of a cotton sample disc where the region 
of integration for determining the average spectra is indicated by a black area with a diam-
eter of 2.5 cm. B) Scores plot for the processed spectra in the UV-Vis. The 2D projection 
of the 95 % confidence ellipse of the data collected from each type of cotton is included to 
facilitate visualisation of the obtained results. C) Loadings plot for the UV-Vis. D) Scores plot 
for the NIR. E) Loadings plot for the NIR.
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The first three PCs explain a significant amount of the 
NIR hyperspectral data for both pre-processing methods. 
Calculating the PCA model at each pixel or deriving it 
from the mean spectra does not significantly change 
the data behaviour of the model (Figure 6 and Figure 

7). The advantage of using average spectra instead of 
the complete data set is fast data processing. However, 
this method is limited to recognise or spectrally separate 
background from the samples automatically. Therefore, 
a certain time is required to select the samples manu-
ally and calculate the average spectra for each cotton 
sample disc. On the other hand, when applying a filter 
(see Figure 4) the separation of the sample from the 
background works automatically, but here the quantity 
of data hampers a fast processing. The scattering in the 
scores plot in Figure 7 shows the huge variability of the 
properties of the samples, theses only become visible if 
the spectra are taken with HSI. Compared with the scat-
tering where the spectral information is averaged over 
a larger area (Figure 5 and Figure 6) this is remarkably 
reduced. The large variability of the score values from 
the HSI indicates a change of the sample’s properties 
on the scale of the resolution actually achieved. For the 
HSI setup this is about 13 µm. The high lateral resolution 
achieved here shows that sample properties on this scale 
vary and are therefore relevant, as new insights into the 
heterogeneity of fibre samples can be gained. As a conse-
quence, the data show the high potential for HSI which is 
beyond the differentiation of fibre types.

In the next step, a filter is required that combines 
the advantages of both methods to speed up the data 
handling. Together with this, a simplified model can be 
developed that meets the requirements of real online 
applications.

Conclusions
UV-Vis/NIR reflection spectroscopy and HSI in combina-
tion with PCA is a promising approach for the detection 
and differentiation of raw cotton types. The most rele-
vant information for the differentiation of cotton types 
was found in both the UV and NIR range (see Figure 5C).

Figure 6. A) Spectra recorded by HSI of cotton sample 
discs including one HC sample in the NIR range from 
1100 nm to 2200 nm. Upper right: image of a cotton 
sample disc where the region of integration for deter-
mining the average spectra for each sample is indicated 
by a black circle with a diameter of 2.5 cm. B) Scores plot 
for the processed spectra in NIR-HSI. The 2D projection 
of the 70 % confidence ellipse of the data collected from 
each type of cotton is included to facilitate visualisation 
of the obtained results. C) Loadings plot for the NIR-HSI.

Reflectance 
(nm) Functional groups References

1240 nm CH 39, 40
1525 nm ROH 39, 40
1790 nm CH3, CH2 39, 40
1955 nm OH 39, 40
2117 nm ROH 39, 40
2342 nm CH, CH2, CH3 39, 40

Table 2. HSI-NIR reflectance maxima.
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The results obtained with UV-Vis/NIR spectroscopy 
revealed that the contribution in the UV can be assigned 
to the presence of protein at 280 nm. The most domi-
nant contribution to absorbance in the NIR range can be 
assigned to CH3 for the most prominent band at 1775 nm 
and to ROH vibrations at 1500 nm. The spectral data 
were analysed with PCA in order to achieve a differenti-
ation of different cotton types. The PCA model was able 

to classify all types with the first two PCs explaining the 
maximum variance of the data.

NIR-HSI results reveal the most dominant absorbance 
assigned to CH3 and ROH at 2270 nm and 1525 nm, 
respectively. Two methods were used for processing 
the large amount of data. Both approaches resulted in a 
differentiation of all types. The advantages of the rugged 
online home-built setup is a high spatial/spectral reso-
lution and a rapid data acquisition. With this method, 
several samples can be measured in a short time and at 
low cost.

Based on the data shown it is reasonable to develop a 
simplified chemometric model, which meets the require-
ments of a real process with industrial standards and 
precision.
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