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Terahertz waves are sensitive to differences in biological tissue hydration, we present promising results regarding the feasibility of applying this 

with terahertz time-domain spectroscopy and imaging for early detection of cancer through the characterisation of human gastrointestinal tissue 

with cancer-affected regions. To do that, healthy (normal) and carcinoma-affected gastric tissue samples at different stages were measured using 

transmission terahertz time-domain spectroscopy in the frequency range of 0.15–2.00 THz. Absorption coefficients and refractive index spectra 

of both normal and carcinoma-affected tissue were extracted and analysed. The results confirm that the techniques may be powerful tools to 

perform qualitative, early diagnosis of human cancer.
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Introduction
According to global cancer data, the cancer burden rose 
to 18.1 million new cases and 9.6 million cancer deaths 
in 2018;1 the commonest type of cancer is gastrointes-
tinal (GI). Its early diagnosis is crucial for in-time treat-
ment of affected patients. Several techniques, such as 
X-ray imaging, magnetic resonance imaging, tissue biopsy 
etc., are presently being used and are under continuous 
investigation for this purpose. However, there are still 
many challenging issues to overcome, as it is difficult to 

diagnose the disease’s presence in its very early stages 
and/or to distinguish between benign and dysplastic 
tumours. Terahertz (THz) spectroscopy and imaging seem 
to be powerful options to add to this collection of diag-
nostic tools contributing to a solution for the important 
health and social problems associated with cancer.

Terahertz time-domain spectroscopy (TTDS) and 
imaging are attracting worldwide interest for their appli-
cation in biomedicine, such as for the characterisation 
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of biomolecules,2 DNA/RNA, amino acids/peptides, 
proteins,3 cells and tissues, including studies of different 
types of biomaterials.4,5 The techniques are also impor-
tant in a wide spectrum of applications, including home-
land security,6–9 law enforcement,10 restoration of cultural 
heritage,11,12 and for quality control of pharmaceuticals 
and identification of their counterfeiting.13,14

The promising results on the use of the techniques, 
particularly in the biomedical area,15–17 have fostered 
the large-scale research activity of many groups world-
wide. However, besides the previously mentioned issues, 
there are others that are challenging at the fundamental 
technological level: in understanding the interaction of 
THz waves with biological media, including appropriate 
safety guidelines. The fact that materials such as paper, 
vinyl, plastics, textiles, ceramics, semiconductors, lipids 
and powders are transparent to THz waves makes the 
THz region a good candidate for the above applications. 
Furthermore, THz waves do not present risks due to 
irradiation.

In the specific case of cancer diagnosis, there is a growing 
interest in exploring the THz spectrum. Its usage in medical 
imaging has certain advantages compared to X-rays, such 
as its considerably lower energy than the ionisation energy 
of biological molecules, coupled with the fact that the rota-
tional and vibrational modes of water molecules lie within 
the THz spectral region, contributing to a high sensitivity. 
The feasibility of using THz waves to detect human tumour 
tissues by monitoring cell density and changes in water 
content has been reported recently.18–20 The tumour 
environment usually generates increased blood supply to 
affected tissues and a consequent local increase in tissue 
water content. With the growth of tumours, the central 
cells no longer receive nutrients from the healthy blood 
vessels and, therefore, new blood vessels are formed. This 
could contribute to the contrast observed in THz cancer 
diagnosis. Moreover, conformational modes of water and 
biomolecules for this frequency region, as well as struc-
tural changes occurring in diseased tissue, have also been 
observed or suggested by several research groups to be 
contrast-contributing factors.21–23

Additionally, the high sensitivity of THz waves makes 
this technique suitable not only for the discrimination 
of abnormal from normal tissue, but also of benign from 
malignant tumours. This is achieved through differences 
in the interstitial water content in the tissue, due to the 
fact that the water-bound state is different in the two 
types of cancer.15,24,25

Malignant tumours are made up of cells that grow out 
of control, which can invade nearby tissues and spread to 
other parts of the body, moving away from the original 
(primary) tumour site and spreading to other organs. There, 
they can continue to grow and form another tumour on 
new sites, which is known as metastasis or secondary 
cancer.26 Taking into account the unique features of THz 
technology, i.e. strong sensitivity to the presence of free 
or bound water, it can be seen how differentiation of the 
two types of tumour is possible.27

In previous works, we have investigated the potential of 
THz imaging and spectroscopy for the detection of dehy-
drated, paraffin-embedded, colorectal and gastric tissues. 
Essentially, these studies have shown that contrast 
between normal and tumour tissues could be detected, 
further indicating that other tissue elements contribute 
to the contrast observed rather than just water.28–30

The present work is aimed at demonstrating the capa-
bility of a compact THz spectrometer (a fibre-coupled THz 
spectrometer) to establish contrast between normal and 
gastric-carcinoma-affected freshly excised tissue. This 
research work is one of the few studies carried out on 
carcinoma-affected human stomach tissue by THz spec-
troscopy. Hou et al.31 have studied dehydrated gastric 
tissue using THz spectroscopy and found differences in 
absorption spectra between normal and tumoural tissue, 
confirming that the intrinsic increase of hydration in 
cancer-affected tissues could be the main THz contrast-
contributing factor.

Materials and methods
Tissue sample preparation
A set of 15 anonymous samples of human gastric tissues, 
comprising normal and carcinoma-affected areas, was 
obtained from the Department of Pathologic Anatomy 
of Centro Hospitalar São João (Porto, Portugal). The 
tissues were donated for lab use and prepared under the 
approval of the Ethics Commission of Centro Hospitalar 
S. João – EPE, (Ref. CES 211-13).

Histological samples with constant thickness of 0.50 mm 
were taken from partial distal and total gastrectomy spec-
imens. They had been previously analysed, classified and 
staged as gastric adenocarcinomas pT3 and pT4. Those 
staged as pT3 corresponded to a tumour penetrating 
sub-serosal connective tissue without invasion of visceral 
peritoneum or adjacent structures.32,33 Those staged as 
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pT4 corresponded to a tumour which had invaded the 
serosa (visceral peritoneum).32 The tissue samples were 
prepared according to standard protocols approved at 
the Centro Hospitalar S. João, Porto. Briefly the proce-
dures for collection and preparation of tissue samples 
consisted of three steps: 1) tissue collection, preparation 
and fixation; 2) selection of samples from the tissue; and 
3) processing of the sample.

The normal and carcinoma-affected areas in each 
sample had been previously identified by histological 
examination (Figure 1).

Before starting any measurements, samples were 
sandwiched between two 1 mm thick and 20 × 20 mm 
sized high-density polyethylene (HDPE) plates, sepa-
rated with spacers of 0.50 mm. The tissue was slightly 
pressed between the two plates in order to avoid air gaps 
between the sample surface and the HDPE surface.

THz spectroscopic analyses
A fibre-coupled THz spectrometer (model T-Fiber, 
Teravil Co., Vilnius, Lithuania) was used for the meas-
urements. The spectrometer has an integrated femto-
second fibre laser with two fibre output ports. The 
femtosecond laser with fast delay line and signal regis-
tration electronics is integrated in a single compact 
housing with a footprint of 40 × 40 cm. The fast delay 
line allows real time data acquisition with a speed 
of 10 spectra s–1, 110 ps time window and a spec-
tral resolution <10 GHz. The transceiver (emitter and 
detector) is fibre-coupled to the femtosecond laser. 
The laser is a LightWire FF50 (EkSPLA), with 1064 nm 
central wavelength, and a pulse duration of <160 fs, 

60 mW output power, 40 MHz pulse repetition rate 
and 0.15–3.00 THz frequency range. The TTDS and 
imaging measurements were performed in randomly 
chosen zones of the same samples. All the samples 
were measured at the room temperature under the 
same conditions and mechanical positioning.

Tissues parameter extraction
Several authors have presented material parameter 
extraction algorithms to determine the complex refrac-
tive indices of samples with TTDS.34,35 For that purpose, 
a THz pulse propagating through a sample is compared 
to another THz pulse propagating without the sample in 
its path. This was achieved by tracing the temporal shape 
of the electric field with sample, Es(t), and without sample, 
Eref(t), where t is the optical delay time. These two pulses 
are transformed into the frequency domain using a fast 
Fourier transform (FFT) to obtain the complex transmis-
sion spectra for the signal, Es(ω), and for the reference 
(HDPE only), Eref(ω). Considering normal incidence, the 
ratio of these fields is related to the absorption coef-
ficient α(ω) and refractive index n(ω) of the sample as 
follows,36,37

	
2

( ) 1 exp ( )exp ( )
( ) ( 1)4 (1 )
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ref

E d A
E c nn n

ω κω ω κφ ω
ω

 = = −    −+  
	 (1)

where ω is the frequency, c is the speed of light in a 
vacuum, d is the thickness of the sample, A(ω) is the 
amplitude ratio between the spectrum of the sample 
signal and that of the reference, and Δφ(ω) is the rela-
tive phase difference. From Equation (1), the optical 
constants of the tissue were calculated, and, therefore, 

Figure 1. Macroscopic images of samples from different stages of gastric carcinoma. (A) pT3 stage and (B) a pT4 stage carci-
noma.



4	 Terahertz Spectroscopy and Imaging for Gastric Cancer Diagnosis

the refractive index and the absorption coefficient were 
determined using the following equations,34,35,38

	 ( ) ( )samp refn c d nω φ ω ω= ∆ +   	 (2)

	 { }21( ) 2 ln 4 ( ) ( ) ( )samp samp samp refd n A n nα ω ω ω ω−  = +  	 (3)

where κ(ω) is the attenuation coefficient, which is 
the imaginary part of the complex refractive index, 
( ) ( ) ( )sn n iω ω κ ω= − . From the recorded pulses, A(ω) and 

φ(ω) were directly obtained through FFT operation.

Results and discussion
A comparison was made in terms of the attenuation of 
absorption functions due to water and bio-structural 
alterations due to the tissue pathologic stage between 
normal, and pT3 and pT4 development stages. It allowed 
us not only to discriminate the three phases and their 
exact margins, but also to achieve early diagnosis by 
detecting initial differences between the malignant and 
benign phase.

In this study, the working frequency range was 
restricted to between 0.15 THz and 2.00 THz due to the 
relatively high noise level on both sides of the working 
range (before 0.15 THz and after 2.00 THz).

In Figure 2, a slight contrast between the normal 
(healthy) regions and those in tissue pathological stage 
pT3 as well as that in stage pT4 can be observed. In 
turn, one can also observe a slight contrast between the 
two pathological stages pT3 and pT4. For example, at a 
frequency of 2 THz, the absorption coefficient value for 
the normal tissues varies between 90 cm–1 and 110 cm–1 
from the regions of samples with pathological stages pT3 
and pT4, respectively.

In previous studies on dehydrated gastric tissue,29 we 
observed very low contrast, a fact that was explained 
by the absence of water, which intensifies the contrast 
due to its strong absorption in the THz frequency region. 
As was found by other research groups,18,39 refractive 
indices and absorption coefficients of tumour tissue are 
higher than those of normal tissue. This occurs because 
tumour tissue tends to have slightly higher water content 
compared with normal. HDPE has low absorption and no 
dispersion at working frequencies and, therefore, losses 
due to this medium had no significant impact on the 
results. Other factors on dehydrated samples, namely 
conditions within the tumour microenvironment, rapid 

and uncontrolled cell division leading to an increased 
cell density and/or to the presence of certain proteins, 
factors associated with the differences caused by cell 
iterations and abnormal proteins, increase in the vascu-
larisation around tumours and the intrinsic release of 
growth factors, contributed to the observed contrast, 
although at lower percentages.

Terahertz imaging is able to provide a greater spatial 
resolution, up to tens of microns. Therefore, THz imaging 
can, in support of spectroscopy, be used to assess 
both the structure and the attenuation performance of 
bio-tissue samples by recording the image at selected 
frequencies where optical constants differ considerably. 
The imaging was performed with a VDI (Virginia Diodes, 
Inc.) electronic multiplier chain driven by the synthesiser 
and producing 580–620 GHz radiation. Radiation was 
electrically modulated at a frequency of 2 kHz.

The beam was collimated by a Teflon lens with 12 cm 
focal length distance and 5 cm diameter. The collimated 
beam was angled with a 5 cm mirror in order to extract 
just the central area of the emitted beam and directed to 
the investigated sample by a 5 cm focal length off-axis 
parabolic mirror. The transmitted and reflected radiation 
was also collected using parabolic mirrors and focused to 
the titanium microbolometer detector.39 We estimated 
that a distance of 1 m between the THz source and the 
flat mirror was required for far field radiation conditions. 
The titanium microbolometer was chosen for THz radia-
tion detection as it possesses a small effective-antenna 
cross-section, enabling a high-resolution scan of a local 
intensity.40 The signals were registered with a lock-in 
amplifier and processed with a computer. Samples were 
scanned by moving them on two translational stages 
along the x–y axes.

Figure 3 displays the THz imaging results for one of the 
samples, obtained at 0.58 THz. The randomly selected 
tissue for imaging appeared to be opaque in the transmis-
sion experiments. However, the image in reflection shows 
a reasonable contrast between the zones of affected 
and normal tissue (scales in the change of the signal are 
shown on the left axis in all panels). Diseased zones can 
be clearly seen as areas demonstrating higher reflectance 
(red colour). The low contrast can be explained by the 
fact that measurements were performed directly on an 
irregular surface of the tissue, producing THz wave scat-
tering. The selection of only one sample for imaging was 
intended to show the differences between affected and 
normal (healthy) regions in the same sample.
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The contrast between affected and normal tissue 
regions is resolved in the reflection image, indicating 
different water content in the sample. This illustrates that 
THz imaging can successfully be employed for cancer 
diagnosis in very early phases.

Conclusions
In the present study, two groups of human normal 
and tumoural gastric tissue, taken from a section 
with the same bio-structural typology, were inves-
tigated. Using TTDS, we have shown that carci-
noma regions of al l  samples intrinsical ly show 
higher absorption coefficients and refractive indices, 

allowing them to be distinguished from the normal 
regions of the samples. These findings, together 
with those observed using THz imaging, may take us 
a step closer to early cancer detection. Thereby, the 
techniques (TTDS and THz imaging), after exhaus-
tive and accurate experimental work, could be good 
candidates as complementary tools to those already 
used in cancer diagnosis.
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Figure 2. The absorption coefficients and refractive indices spectra in both, normal and 

tumor tissue for pT3 and pT4  

 

Terahertz imaging is able to provide a deeper spatial resolution up to tens of microns. Therefore, 

THz imaging can, in support of spectroscopy, be used to assess both the structure and the 

attenuation performance of bio-tissue samples by recording the image at selected frequency 

where optical constants differ considerably. The imaging was performed by using VDI (Virginia 

diodes, Inc) electronic multiplier chain driven by the synthesizer and producing 580-620 GHz 

radiation. Radiation was electrically modulated at 2 kHz frequency. 

Figure 2. The absorption coefficients and refractive indices spectra in both, normal and tumour tissue for pT3 and pT4.
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