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It is highly demanding to identify healthy and non-healthy species in a heterogeneous environment such as human tissues. In such a case, one

identifier, such as a spectral fingerprint, might be inadequate. Therefore, additional identification is required, for instance, a polarisation measure-

ment. In view of that, the development of a spectropolarimeter that captures two cross-polarised arrays of spectral images is a key requirement. To

meet this requirement, an imager optical setup has been designed to provide spatial, spectral and polarisation preference information for species

that exist in a heterogeneous environment, such as in medical tissue samples. The spectral and polarisation information is obtained employing an

acousto-optic tunable filter and a polarising beam splitter, respectively. The optical imager is designed to operate in the visible-near infrared range

(450-850nm) with a spectral resolution of 3nm. The spectropolarimeter design along with optical characterisation results are reported.
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Introduction

Human tissue samples are in many cases confusing,
heterogeneous environments for identifying disease.!
Hyperspectral imaging (HSI) is a contactless inspection
technique that has been employed for identification
purposes in medical tissues such as skin inflammation
levels, and in vitro atherosclerosis levels in human veins.2®
Nonetheless, solely the spectral footprint in some medical
situations is insufficient.* Consequently, a second identi-
fying mark for tissue is recommended to assist physicians
in their critical role of diagnosis or treatment.

HSI is a promising technology for contactless inspec-
tion and precise remote sensing for various objects
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(tissues, fluids etc.). The potential of HSI is built upon
the abundance of identifying information for the object
of interest. HSI information holds the form of a three-
dimensional matrix. This matrix has two spatial dimen-
sions for the object’s region of interest and one dimen-
sion for a spectral record for each spatial location.>¢ HSI
has displayed a profound impact in a diversity of research
fields including archaeology, wastewater monitoring,
food industry, criminology, forensics, medicine and plane-
tary remote sensing.” '* Nevertheless, the valuable infor-
mation of HSI might disguise evidence of the presence
of some species in a heterogeneous environment.!-16
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A Novel Dual-Path High-Throughput AOTF Imaging Spectropolarimeter

For such cases, a piece of auxiliary information might
improve identification. One approach, for identification
of paradoxes, is the polarisation preference for an object
(the polarisation preference of an object means that this
object gives maximum display when the incident light is
polarised and its polarisation direction matches its pref-
erence).’~?* Accordingly, the acquisition of a group of
distinguishing features such as the spectral, the spatial
and the polarisation preference information for an object
has a high potential.

In addition to the acquisition of the object’s spatial and
spectral features, various optical designs were earlier
proposed for HSI systems.?>=?% These designs include
optical filter-based-imaging spectrometers??-3! and
imaging spectrographs via prisms or gratings.3>® Among
the variety of designs, optical tunable filter (OTF)-based
HSI is an emerging research direction.®**” The OTF is
a controlled window that only permits a user-selected
spectral band to pass. The controlling phenomena allow
sorting of optical filters into different types.?” Two types
of OTF are more dominant in HSI designs: liquid crystal
tunable filter (LCTF)37%8-40 and acousto-optic tunable
filter (AOTF).1821-23 These dominant types of OTF have
been compared in a few studies.®***'4?> The AOTF enables:
(1) rapid random access to spectral bands, (2) relatively
long spectral range of operation, (3) robust performance
in harsh environments'’#* and (4) wide aperture within
compact size-tunable filters.?! For all of these reasons, we
used AOTF in this study.

AOTF-based-imaging spectrometers have two conven-
tional configurations. One configuration employs two
image detectors in order to capture the diffracted orthog-
onally polarised spectral images simultaneously.**-*> This
configuration is limited by a small field of view (FOV) as
it captures two spectral images at once. The other AOTF-
spectrometer configuration uses a single detector and
substitutes the second with an external variable retarder in
order to alter the polarisation of the input light.17214¢ This
configuration overcomes the limited FOV, nevertheless, it
lacks the facility of capturing two orthogonally polarised
images. For a rapidly changing biological sample occupying
a wide FOV, a novel configuration needs to be proposed.

In this paper, we propose a novel design for a dual-path
AOTF-HSI optical configuration. The novel configuration
captures two orthogonally polarised datacubes simulta-
neously for a FOV of 13cm? at a distance of 70cm. The
proposed AOTF-HSI instrument runs in the visible-near
infrared (VNIR) spectral zone, 450-850nm, limited by
a spectral resolution range of 1.5-5nm. In general, the
image acquisition time for a whole datacube is 905,

taking into consideration that 1s is required for each
frame. The spatial resolution for the developed AOTF-HSI
instrument is measured using a USAF-1951 object. The
smallest target clearly resolved by the AOTF-HSI is
group 1/element-1 which is equivalent to 2LPmm-. The
optimal location of the target to be in focus was deter-
mined to be within 668 mm up to 702 mm, therefore, the
effective depth of focus is equal to 34 mm. To charac-
terise the dual-path AOTF-HSI instrument, three targets
were imaged: (1) a ceramic painted cup, in order to eval-
uate the polarisation preference, (2) a spectral calibration
target, for calibration purposes and (3) a passport colour
checker to evaluate the imager spectral performance.

Materials and methods

Two halogen sources emitting linearly polarised light
were used to evenly illuminate the object’s region of
interest (ROI) in order to be imaged by the dual-path
AOTF-HSI instrument. The AOTF-HSI system, shown in
Figure 1, starts with a zoom lens in order to collect the
back-scattered light. This lens forms an image of the ROI
at the lens’ focal plane. At this plane, a square aperture
is installed to allow only the image of the ROI to be clear
of any optical noise. A second lens is installed at a focal
length far from the ROI image in the optical setup. This
lens is the primary one in a two-lens optical relay used in
building the dual-path AOTF-HSI instrument. The optical
relay transfers the ROl image to the image sensor. The
relay lenses are achromatic; in order to reduce the chro-
matic aberration effect. In the region between the two
relay lenses, a polarising beam splitter (PBS) is installed.
The PBS internally divides the input optical beam into
two orthogonally polarised collimated rays. One is trans-
mitted and one is perpendicularly reflected. The reflected
ray meets a mirror installed on the right-hand side of the
PBS in order to direct the ray toward the input aper-
ture of the AOTF crystal. On the way toward the AOTF
crystal, the reflected PBS ray passes through a half-wave
plate in order to modify its polarisation. After this modi-
fication, the direction of polarisation for both rays out of
the PBS are adjusted to match the AOTF crystal optimal
input polarisation.

The novel HSI optical setup, in Figure 1, incorporates
a non-collinear AOTF device (manufactured by Gooch &
Housego TF625-350-2-11-BR1A) optimised for imaging
applications. The incorporated AOTF device contains a
crystal that is optimally sensitive to vertically polarised
incident light. The filter crystal has an angular acceptance
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Figure 1. The developed AOTF dual-path imaging spectrometer
schematic diagram includes: (1, 2) two halogen sources adapted

to emit linearly polarised light; (3, 5, 10, 14) lenses used to collect,
collimate and focus the captured optical input; (4) square aperture to
limit the size of the optical beam; (6) PBS to divide the input beam
into two orthogonal photon rays; (7, 11, 13) mirrors to control the
optical paths; (8) half-wave plate to rotate the polarisation of the
beam reflected by the splitter; (9) AOTF cell to diffract the selected
spectral bands; (12, 15) CMOS sensors to detect the captured pho-
tons propagating along the dual paths.

limited to £2° for input optical rays. For tuning the optical
output of the filter crystal, a radio frequency (RF) signal
ranging from 40MHz up to 150MHz is applied. The RF
tuning signal is generated by the RF signal synthesiser
(manufactured by Gooch & Housego MSD040-150-
0.2ADM-A5H-8 x 1). The generated RF signal reaches
the AOTF crystal through a piezoelectric transducer.
The transducer, in response to the RF signal, generates
a train of acoustic waves that propagate through the
AOTF crystal. The acoustic waves transform the AOTF
crystal into a transient diffraction grating for the input
light beam. The non-collinear AOTF diffraction forces a
user-selected optical narrowband to be deviated out of
the input broadband beam. To tune the deviated band
along the AOTF operating range, the user sequentially
changes the RF signal from one end to the other.

The non-collinear AOTF is accurately aligned to allow
the PBS output rays to propagate through the crystal
within input angular acceptance. The propagating rays
through the AOTF crystal are subject to diffraction that
causes a narrowband from each ray to be separated. The
separated narrowband from each ray deviates, by 4.5°,
at the exit aperture of the AOTF device. Before the end
of the imager optical path, two mirrors were installed,
one for each separated narrowband, in order to direct
them toward the second lens of an optical relay. Each

optical relay forms the ROl image with a unity magnifica-
tion limited by the diffracted narrowband at two CMQOS
image sensors. The sensors’ active region is divided
into 2048 x 2048 pixels in a camera housing (Ximea
MQO042rg-CM enhanced-IR). This camera has several
advantages, including compact size, high quantum effi-
ciency, large sensor format, low power consumption and
low dark noise. In the final analysis, the developed imager
setup will capture two simultaneous orthogonally polar-
ised images for an object.

In terms of polarisation, Figure 2 demonstrates the
optical beam path in the developed spectropolarim-
eter. The path starts with a linearly polarised light beam
emitted from two halogen sources in order to illuminate
the object of interest. The back-scattered light, which is
randomly polarised, is captured and directed toward the
PBS. The PBS divides the randomly polarised input light
into vertically (transmitted) and horizontally (reflected)
polarised light rays. Next to the PBS, the installed AOTF
cell is optimised for high throughput when a vertically
polarised optical beam is input. The PBS transmitted ray
matches the installed AOTF cell high-throughput condi-
tion, but the reflected ray does not. Therefore, a half-
wave plate is installed in order to transform the PBS
reflected ray into a vertical polarised one. From this point
on, the PBS output rays become vertically polarised.
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The AOTF-HSI imager simultaneously captures two
orthogonally polarised datacubes for the object’s ROI. It
was of interest to evaluate the consistency of the imag-
er's optical paths; for this purpose, the diffracted rays
along each path were studied in terms of the tuning RF
signal and the narrowband linewidth. In theory, the AOTF
laws for the tuning RF signal for a certain spectral band
are shown in Equation 1, and the spectral linewidth for
the diffracted narrowband beam is shown in Equation 2.
The terms used in Equations 1 and 2 are as follows: X is
the wavelength, v is the acoustic speed, f is the frequency
of the acoustic wave, An is the difference between the
indices of refraction for the incident and diffracted radia-
tions, 0, is the angle of the optical incident ray, A\ is the
full-width half maximum of the AOTF-diffracted band, b
is the spectral dispersive constant of the AOTF cell and
L is the length of interaction between the acoustic wave
and optical radiation.

)\:VATH./sin4 0. +sin’ 26, (1)
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Tuning the AOTF cell is achieved by the emitted RF
signal generated by the AOTF driver. Each RF signal
enables the AOTF cell to diffract one narrowband in two
directions. One direction is tagged the positive diffrac-
tion order and the other is tagged the negative diffraction
order. The diffracted narrowband, for each order per
each RF signal, is measured by a high-resolution spectro-
photometer (Newport-OSM-400, Irvine, CA, USA). The
measured central wavelength for each diffracted narrow-
band, in the two first diffracted orders of the AOTF cell, is
plotted against the generated RF frequency of the AOTF
synthesiser in Figure 3(a). The figure illustrates a spectral
shift between the central wavelengths of the positive and
negative diffracted orders. The spectral shift ranges from
2nm to 16 nm. In Figure 3(b), the spectral linewidth for
both AOTF-diffracted orders against the spectral range
of AOTF operation is displayed. Figure 3(b) shows that
the linewidth is not exactly the same for the positive

Monochromatic
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Mirror
+]
N
I‘I Gt o -/
(AOTF) jy Mirror

Acousto-Optic Tunable Filter

Monochromatic
Camera

¥ vertical polarization
Random polarization

Figure 2. A schematic diagram displays the polarisation rate in the optical beam from the
illumination sources through the imager setup toward the detectors. The randomly polar-
ised back-scattered photons, out of the object’s ROI, are directed toward the PBS. The

PBS divides the randomly polarised input light into vertically (transmitted) and horizontally
(reflected) polarised light rays. Next to the PBS, AOTF is optimised for high throughput
with an input of vertical polarisation. The PBS transmitted ray is vertically polarised, but the
reflected ray is horizontal. For the horizontally polarised ray, a half-wave plate is integrated
to transform it into a vertical one. From this point on, the two rays hold the same polarisa-
tion as they pass through the entire imager setup. The AOTF diffracts the selected spectral
bands, but with an orthogonal polarisation direction relevant to the incident light beam.
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Figure 3. (a) The AOTF-HSI imaging spectrometer tuning relationship for both negative (blue circles)
and positive (red circles) first diffracted orders. (b) The AOTF-HSI imaging spectrometer linewidth
(spectral resolution) for both negative (blue circles) and positive (red circles) first diffracted orders.

and negative orders. Accordingly, the spectral imaging
using both diffracted orders of an optimised AOTF cell
is meaningless. Figure 3(b) shows also that the negative
order has a higher spectral resolution (lower linewidth)
compared to the positive order. Therefore, building an
imaging spectrometer employing the optimised AOTF
crystal enables imaging of a large spatial FOV within a
narrow spectral window.

As there are two channel paths in the breadboard imager
setup, a comparison between the linewidth for each path
is of interest for quality purposes. Figure 4 shows that the
maximum difference detected between the two optical
paths does not exceed 0.6 nm. The detected spectral
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Figure 4. The AOTF imaging spectrometer dual paths
linewidth difference plotted along the entire range of
operation.

difference between the two optical paths is less than the
imaging spectrometer’s finest spectral resolution.

Experimental imaging

For polarised imaging, a white ceramic painted object,
which is shown in Figure 5(a), is imaged. The selected
object is characterised by 1) a cylindrical shape, to show
the ability of imaging non-flat surfaces, 2) a painted
appearance with several colours to produce images at
subsequent spectral bands and 3) a glossy surface to
highlight the hurdle of the specular reflection in spectral
imaging.

In addition, two diffuse reflectance targets are imaged
to determine the value of the impact of the polarisation
preference on the spectral signature. The first target is a
wavelength calibration target, erbium oxide (Labsphere-
WCS-EO-010-2169) as shown in Figure 5(b). This target
is also used to spectrally assess the two optical paths of
the developed imager.*” The second target is an X-Rite
Color Checker Passport (CCP), as shown in Figure 5(c).
The CCP target is commonly used for photography
correction and spectral camera characterisation.*® The
target’s datacubes are corrected for the detector’s dark
noise. The noise-free datacubes are normalised to a
standard white target (Labsphere-SRS-99) as shown in
Equation 3.
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(a) (b)

captured two orthogonal polarisations.

Figure 5. (a) A white ceramic painted object is imaged to assess the benefit of combining the polarisation
against the spectra as two identification parameters in the developed hyperspectral imager. (b) One-inch
wavelength calibration diffuse reflectance target, erbium oxide (Labsphere-WCS-EO-010-2169) and (c)

X-Rite CCP were used to examine the spectral variation of the mean pixels’ reflectance intensities of the

R is the computed reflectance of the object’s FOV, I,
is the reflected intensity of the white target, IT is the
reflected intensity of the object’s FOV and D is the detec-
tor’'s dark intensity. The complete reflectance for each
pixel in the FOV is a sequence of data extracted from the
entire spectral bands using Image-J freeware.*

Results
Polarised imaging results

To illustrate the benefits of cross-polarised imaging, we
compared the captured images for the glossy object at
two orthogonal (vertical and horizontal) polarisations. A
set of datacubes was captured by the developed spec-
tropolarimeter for the ceramic object. The captured
dataset contains three cubes, one for each polarisation,
and one for both polarisations combined. The same

(b)

FOV was imaged by a digital colour camera in the same
position as the spectropolarimeter. A group of images,
one colour and one spectral from each datacube for the
ceramic object, is displayed in Figure 6. The displayed
spectral images are selected to be the ones captured
in the narrowband that was centred at a wavelength
of 602.5nm. This specific narrowband was chosen for
display because it has the highest signal-to-noise ratio
within the datacube.

As seen in Figure 6(a), some specular reflection is
apparent from the ceramic object colour image. The shiny
specular reflection obstructs the vision of the horizon-
tally flipped K-shape and part of the painted crown. The
spectral images of the object captured by the vertically
polarised light path or by both polarisations combined are
obstructed by the same specular reflection. In contrast,
the image captured using the horizontally polarised light
path clearly shows the flipped K-shape. For verification

(c) (d)

Figure 6. (a) Ceramic object captured with digital colour camera; (b) the same FOV captured with the bread-
board HSI camera at 602.5 nm central wavelength with two orthogonal polarisations combined; (c) the same
FOV but only using vertical polarisation; and (d) the same FOV but only using horizontal polarisation.
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purposes, we repeated exactly the same imaging proce-
dure, but instead, we rotated the direction of the illumi-
nation polarisation by 90°. As a result, the vertically and
the horizontally polarised images were replaced (images
are not shown) and this time the vertically polarised light
path clearly shows the flipped K-shape. Accordingly,
capturing images using a single polarisation, Figure 6(c),
or combining two orthogonal polarisations, Figure 6(b),
may not be sufficient to retrieve details obstructed by
the specular reflection. However, the presence of the
two cross-polarised images separated is enough to reveal
some lost details as shown in Figure 6(d).

Spectral imaging results

Figure 7 displays the computed reflectance of a wave-
length calibration reflectance (erbium oxide) target.
The red circles represent the vertically polarised back-
scattered light and the green ones represent the horizon-
tally polarised light. The purpose of imaging the calibra-
tion target is to substantiate the spectral performance of
the spectropolarimeter. For this purpose, an erbium oxide
target was imaged since it has two absorption peaks in the
VNIR spectral region at the ranges of 521.4-523.4nm
and 653.8-656.4nm, respectively. The breadboard
spectropolarimeter succeeded in detecting these erbium
oxide absorption peaks in the spectral range specified by
the manufacturer, as shown in Figure 7.

Figure 5(c) shows a CCP target. In the target, five
different colours, marked by blue circles, are selected.
The selected five colours were randomly selected out
of 24 colours in order to investigate its polarisation

12
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g 0.9 '
508 06
807 ~
0.6
05
0.4

480 520 560 600 640

preference. The computed reflectance for each colour
is displayed in Figure 8(a) for the horizontally polarised
light path and in Figure 8(b) for the vertically polarised
one. The reflectance of the selected five colours showed
a similar spectral profile for both polarisations. However,
the intensities of the computed reflectance are not the
same. The intensity variation is attributed to the polari-
sation preference of the CCP target for one polarisation
over the other. The displayed curves are the linear least-
square fitting of the data points at a confidence interval
of 95%.

Discussion

Driven by the benefit of the polarisation and the spectral
identities of different objects, a mobile VNIR spectropo-
larimeter has been developed. The spectropolarimeter
is built using an AOTF device for optical dispersion and
polarising beam splitting for cross-polarised light desig-
nation. The significance of cross-polarised light imaging
was emphasised via imaging a man-made object. In fact,
polarised light imaging overcomes the specular reflection
that obstruct essential details.

A wavelength calibration target was used to scrutinise
the developed spectropolarimeter at both polarisations.
The calibration target displayed no preferential polarisa-
tion, as it maintained the same spectral behaviour regard-
less of the polarisation of the captured light. In the CCP,
variable intensity for each colour was detected. This vari-
ability verified the presence of a polarisation preference

: @ W%O 99@0W%08‘08989

680 720 760 800 840

Wavelength (nm)

....... O~ ErOx-VerPol

O+ ErOx-HorPol

Figure 7. The spectral reflectance of the wavelength calibration
erbium oxide target computed for capturing the vertically polar-
ised part of the back-scattered light (red balls) and the horizontally
polarised back-scattered light (green balls).
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Figure 8. (a) The least-square fitting for the reflectance data of the five selected colours (yellow, red,
purple, pink and green) as captured using horizontally polarised light, (b) the least-square fitting for the
reflectance data of the same colours as captured using vertically polarised light.
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of the CCP target. In the final analysis, it is useful to utilise
a spectropolarimeter for visualising intricate, man-made
and natural objects to preserve all contained information
in the targeted FOV.

Conclusions

The purpose of developing the spectropolarimeter, in
this study, is to provide two simultaneous cross-polarised
spectral images of the object of interest. The provided

duality of spectral data provides multiple advantages: first,
it achieves high optical throughput, as proved earlier;>°
second, the new configuration creates a cost-effective
imaging spectropolarimeter in comparison to the commer-
cial VNIR ones; third, and finally, it allows real-time moni-
toring of an object using two cross-polarised views across
the entire operating spectral range. For instance, the
developed setup might be used for monitoring the fluores-
cence emission of a medical/non-medical tissue sample,
expressly if it has a polarisation preference.
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