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Raman confocal microscopy is an increasingly useful technique when applied to food samples; it has the unique ability to interrogate the chemical 

structure, aligned with the same confocality capability that is available when using standard confocal microscopy. In this research, we investigated 

the potential of Raman confocal microscopy to investigate the components in a model cheese system. We showed an ability to distinguish whey 

protein particles within the casein protein matrix using several different image analysis approaches. The results illustrate the potential of Raman 

confocal microscopy and imaging to understand the chemical and microstructural features of cheese systems via the analysis of the distribution of 

the protein types in complex dairy matrices.
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Introduction
The potential to apply analytical spectroscopic methods 
to analyse the microstructure of food systems has been 
a relatively recent development, largely because of the 
increasing capability and availability of suitable imaging 
technologies. Developments in instrumentation and spec-
tral and spatial resolution and increased signal-to-noise 
technologies allow detailed chemical and structural infor-
mation to be gathered at a microscale in food systems.1

Dairy systems, in particular, present many challenges 
with respect to microstructural imaging; the limited 
specific histological techniques that are available can 
introduce artefacts. The development of Raman imaging 
using confocal microscope systems allows research into 
the chemical and corresponding microstructure of various 

components in a food system without some of the many 
artefacts introduced with other methods.2

Protein secondary and tertiary structure is linked to 
functionality in many food systems and plays an important 
role in the development of new food products. During 
the processing of food products, changes, such as heating 
and shear, that alter the protein structure and compo-
nent interactions and hence the functionality may occur. 
Raman spectroscopy and imaging has been shown to 
be a versatile tool for investigating the chemistry and 
structure of a range of food systems including dairy prod-
ucts.3‒6 In the case of dairy proteins, their Raman spectra 
can be interrogated to monitor changes in the secondary 
structure, sulphydryl groups, carboxylic acid groups and 
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2 Raman Imaging of Protein in a Model Cheese System

the micro-environment of aromatic side chains.7,8 Raman 
spectroscopy has the potential to unlock information 
that relates changes in the chemical structure and distri-
bution of food components to the functionality in food 
systems.8‒10

The application of spectral methods to investigate the 
chemical structure within various dairy food systems is 
very useful for analysing the effects of processing and 
composition on individual food component systems. In 
addition, imaging techniques using Raman spectroscopy 
allow the identification and location of various structures 
within a food sample at a microscale; this enhances the 
capability of Raman spectroscopy to elucidate structure‒
function relationships in food systems.

Furthermore, Raman spectroscopy offers the poten-
tial to elucidate more detailed information from specific 
protein components in a food system. Protein and 
peptide structures contain amide bonds that give Raman 
signals at specific frequencies, particularly in the amide I 
(1600‒1700 cm‒1) and amide III (1235‒1270 cm‒1) regions. 
The exact frequencies of the amide bands depend on the 
relative positions of protein side chains and interactions 
between other chemical groups, i.e. of the C=O, C‒N 
and N‒H groups. Protein secondary struture is charac-
terised by α-helices, β-sheets and disordered structures. 
Protein tertiary structure is dependent on the side chains 
of the amino acid chains and their interactions; these are 
generally hydrogen bonding, hydrophobic interactions and 
disulphide bridges.5,11‒13 These structures give rise to a 
unique spectral fingerprint that is due to both the amide 
backbone and the side chains. This fingerprint is the key 
element in the application of Raman spectroscopy in the 
determination of protein structure. The purpose of this 
study was to distinguish different regions of protein in the 
Raman images of model cheese systems by using different 
chemometric techniques to compare the spectral data 
from each pixel and then to group them into clusters.

Materials and methods
Raman imaging was performed on a WITec Raman confocal 
microscope with a Princeton Instruments Acton SP2300 
spectrograph, a 0.3 m imaging triple grating monochro-
mator, WITec Control Software Version 1.60.3.3 and 
a 532 nm Raman excitation laser, the Spectra-Physics 
Excelsior 532-60. Samples were scanned at an excita-
tion wavelength of 532 nm with the T1: 600 gr mm‒1 

BLZ = 500 nm grating. This gave a spectral resolution 
of 2‒3 cm‒1. The model cheese system was prepared at 
laboratory scale and whey protein particles were added 
during the final blending.

The cheese samples were subsampled with 1–2 g quan-
tities and then sectioned on a Leica cryostome CM3050 S 
at ‒20 °C to allow sections that retained the microstruc-
ture of the sample to be obtained. Images of the sample 
were then immediately scanned at 4 °C using a thermo-
electric heating and cooling stage (PE120 Linkam) with a 
100× NA 1.4 Zeiss oil immersion lens. On this instrument, 
each image scan took approximately 1.5 h.

Images were taken at 10‒15 µm below the cut surface 
of the sample and random positions in each sample were 
scanned.

Each image was scanned at 200 points and 200 lines 
per 50 µm2 area with excitation at 532 nm, an integra-
tion time of 0.15 s and a laser power of 15 mW (40,000 
individual spectra per image). The laser power was set at 
15 mW as initial tests had shown that laser powers above 
20 mW could lead to degradation of the sample, although 
this does depend on the scan temperature when using a 
controlled-temperature stage; cooling at 4 °C can allow 
slightly higher laser powers of up to 20 mW to be used 
for image scanning of this sample type.

Due to the number of spectra generated for each 
image, multivariate methods of imaging are a very effec-
tive way to image a range of chemical structures in an 
image using spectral fingerprint data. In this case, Raman 
spectral data with a number of wavelengths within the 
spectral range 350‒3600 cm‒1 were used for analysis; 
as the reported “fingerprint” region of approximately 
350‒1800 cm‒1 removed the differentiation of some 
components of interest in dairy components, the broad 
C‒H and O‒H regions were included in our analysis with 
these methods.

Two main different sample types were used: a control 
sample of a standard cheese and the same cheese with 
whey protein particles added. In addition, a control sample 
of the whey particles was analysed to establish a spectral 
and microstructural reference for the whey particles. The 
image data were then processed using WITec Project 5.1 
with background correction, cosmic spike removal and 
Savitsky‒Golay smoothing applied. In order to contrast 
differing image analysis approaches with images of 
complex heterogeneous foods, such as cheese, the images 
were mapped out using several approaches; integrated 
peak maps of a range of chemical bonds and a range 
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of unsupervised clustering algorithms; K-means clus-
tering, multivariate curve resolution with unconstrained 
alternating least squares (MCR‒ALS) and non-negative 
matrix factorisation (NMF); these methods are available 
as options within the WITec software Project 5.1. The 
additional aim was to test the capability of the software 
applications available to us to reconstruct accurate images 
of the cheese sample along with relevant spectral infor-
mation. Unsupervised methods require the user to enter 
endmember numbers. In this experiment endmember 
numbers were chosen for the non- supervised algorithms 
based on the known number of main ingredients, namely 
fat, protein and the whey particles, and were increased by 
one each repetition until the whey casein particles were 
visible in the resulting image.

Integrated peak maps enable the analysis of the distri-
bution and concentrations of various chemical bonds 
pertaining to fat, protein and other cheese ingredients in 
an image. This is a useful way to identify and interrogate 
chemical components, especially if they contain a unique 
bond type or a predominant bond type in their chemical 
structure, and it also allows an interpretation of the distri-
bution of specific bonds within the microsctructure of a 
sample.14

In addition, chemical components that share chemical 
bond types can often be differentiated based on the ratio 

of two relevant bonds in any one compound, and very 
similar compounds may be differentiated using multivar-
iate methods, such as principal components analysis or 
K-means clustering, that separate compounds according 
to the whole or part of their spectral fingerprint.15

Imaging using peak interval 
maps
Peak interval maps were generated from the integrated 
spectral intensity around a specified peak position using 
the average binomial distribution and a bandwidth of 
5 cm‒1. The binomial function averages the spectral pixel 
window using binomial-distributed weighting factors, 
with the maps generated showing the distribution and 
concentration of the specified component peak repre-
senting a specific type of chemical bond, effectively a 
chemical map. If any one constituent of a sample has a 
unique chemical bond in comparison with other constitu-
ents in the sample, a resultant distribution map of that 
specific component is obtained.

For peak interval maps, relevant peak positions were 
chosen from the available reference literature (see 
Table 1) and spectral regions that showed the best 

Band assignment Wavenumber (cm‒1)
S–S stretch Cysteine 510, 525, 545
S–H stretch Cysteine 2550–2580
C–S stretch Cysteine, Methionine 630–670, 700–745
Tryptophan 760, 880, 1360
Tyrosine doublet 850/830
Phenylalanine 1005
C=O stretch of COO–, COOH 1400, 1730
C–H bend 1453
–C–H or +C–H stretch 2880, 2930, 3060
α-Helix 938
Amide I 1650–1685
Amide III 1235–1270
Aromatic side chains (Phe, Tryp, Tyr) 3060–3100
Acyl chains fatty acids 2850, 2885
C=O carbonyl fats 1744
O–H stretch 3200

Table 1. Raman peaks of interest that were evaluated using band 
widths reported for dairy proteins and fats.
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differentiation of the components in the cheese sample 
were selected. Peaks relating to several protein structures 
of interest were investigated to allow an understanding 
of the distribution of protein conformational structures, 
concentrating on those that would differentiate protein 
structures between the main casein matrix of the model 
cheese and the whey protein particles that were added 
to the cheese matrix. Figure 1 illustrates the type of 
spectral information that can be obtained from using a 
peak interval map of the casein region in the image of the 
model cheese system.

The amide I band is due mainly to C‒O and N‒H bond 
stretches, whereas the amide III band is a mixture of 
C‒N stretching and H‒N‒C bending. Differences in 
these bands can reflect the relative differences in whey 
protein and casein secondary structures and thus distri-
butions. Figure 2 shows how this peak interval infor-
mation, gathered over the CH3 protein terminus region 
(2950‒3000 cm‒1), can be combined into a single image 
by mapping intensity distributions of the whey protein 

signals to provide unique information on the chemical 
compositional profile of the sample.

Figures 3 and 6 illustrate how peak intervals of this type 
for three wavelength ranges can be combined to give an 
image with rich chemical information on the location of 
both whey protein and casein peaks imaged at 1613 cm‒1 
and 3100 cm‒1, along with fat imaged at 2880 cm‒1. This 
approach can be further extended to look at the differ-
ences between whey protein and casein in terms of their 
respective amide I and amide III bands and aromatic side 
chain contents.

Results and discussion
Representative spectra for the whey protein and casein 
matrices were gathered by averaging regions of interest 
(ROIs) from within the two different protein matrices 
from the cheese image (Figure 4A). Figures 4A and B and 
Figure 5 illustrate the spectral differences between the 

Figure 1. Spectral graph of the fingerprint region 600‒1800 cm‒1 of the protein matrix in the model cheese control sample.
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casein matrix and the whey protein particles in the model 
cheese system, indicating differences between the two 
protein components. The protein matrices are able to be 
distinguished by reference to previous unpublished work 
where Raman spectra of the individual ingredients and 
matrices were measured along with the spectral informa-
tion generated from the whey particle reference sample, 
as mentioned in the materials and methods section 
(Figure 2). The spectral data illustrate that, apart from 
differences across the amide regions of the Raman spec-
trum, the casein matrix contains relatively more aromatic 
side chains at 3100 cm‒1. The degree of “buriedness” of 
the tyrosine doublet at 850/830 cm‒1 in the spectral 
data shows that the relative difference in tyrosine in 
the casein matrix is higher than that in the whey protein 
particles. The amide I and amide III band distributions are 
also characteristically different. A slight shift in the main 
amide I band for the whey protein particles indicates 
more β-sheet structures, whereas the spectral data indi-
cate relatively more random coil structures in the casein 
matrix. We suggest that Raman shifts in the amide III 
region indicate similar relative differences of random coil 
and β-sheet structures between the casein and whey 
protein components within the cheese system.12,13

The combined overlay of individual peak maps in 
Figure 6 shows good differentiation between the three 

Figure 2. Raman image of whey protein particle sample. 
The images illustrate that the whey protein particles 
could be identified in the preparation solution on inspec-
tion of the spectral details from the various objects in (A) 
the scanned image, (B) the green pixels in the cluster map 
and (C) their associated spectral data.

A B

C

A B

ED

C
Figure 3. Peak interval maps 
of three different integrated 
intensity protein peak regions. 
(A) Peak interval map of 
the aromatic side chains 
(3100 cm‒1); (B) peak inter-
val map of the O‒H region 
(3200 cm‒1); (C) peak interval 
map of the amide I region 
(1613 cm‒1); (D) peak interval 
map of the amide I region 
(1613 cm‒1) in the control sam-
ple; (E) combined overlay of 
three individual peak interval 
maps. Red = fat (2880 cm‒1); 
blue = casein matrix aromatic 
side chains (3100 cm‒1); green 
= whey protein particles 
amide I band (1613 cm‒1).
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chemically distinct components: fat, whey protein and 
casein protein. Of particular interest is the clear ability to 
distinguish between whey protein and casein, the latter 
being an intrinsic part of the cheese structure, whereas 
the whey protein particles were an introduced compo-
nent. They differ, with the whey protein displaying more 
amide III signal and greater amide I intensity, as noted 
previously.

The casein matrix of the cheese can also be investigated 
and chemical differences can be detected by detailed 
analysis of ROIs from the Raman spectra. Figures 4A and 
4B and the spectra in Figure 5 show that this region is a 
blend of casein and water, with some significant differ-
ences in the CH2 (2845 cm‒1) and terminal methyl CH3 
(2930 cm‒1) regions. The amide II and amide III bands at 
1522 cm‒1 and 1300 cm‒1 also distinguish the two forms 

Figure 4. (A) Cheese image: the pale-blue ROIs are from the cheese casein matrix and the bright-green ROIs are from the 
whey protein particles within the cheese sample. (B) Reference spectra of the casein and whey protein components from 
the Raman image of the model cheese system. The blue spectrum represents the average of the casein pixel ROIs and the 
red spectrum represents the average of all the whey protein pixel ROIs.

Figure 5. Expanded Raman spectra of the fingerprint region of the 
casein matrix (blue spectrum) and the whey protein particles (red 
spectrum).

A B
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of casein matrix. As casein comprises four main types 
of protein (αS1-, αS2-, β- and κ-caseins) with different 
secondary structures, we inferred that these were 
present in different concentrations in different regions in 
the cheese matrix.

Multivariate imaging methods
Unsupervised clustering algorithms were also used to 
elucidate components within the model cheese system. 
Unsupervised methods assume no knowledge of the 
number of components in a sample set and their appli-
cation requires testing several variable component end 
member numbers to investigate results based on knowl-
edge of the sample. In this case, although the compo-
sition of the cheese and the reference spectra of the 
ingredients are known, the application of a number based 
on knowledge of the cheese matrix or using supervised 
applications does not give a complete answer when 
there is significant interaction between the constituents. 
Therefore, we have found that in these examples judicious 
experimentation in testing component numbers with 
unsupervised methods is the best approach. Typically, a 
cheese system could be assessed to have only fat and 
protein (e.g. two components). However, this does not 
allow for the considerable heterogeneity of cheese and 
using three to six components gave different results in 
terms of distinguishing fat and protein sub-groups that 
appeared to differ chemically based on assessment of 
their Raman spectra and also based on the known cheese 
ingredients.

K-means clustering is a multivariate technique that 
groups similar spectral areas into clusters. The associated 
algorithm effectively maximises the distance between 
averaged spectral clusters and minimises the distance 
between samples within a cluster. In this case, the 

Figure 6. Combined overlay of three indi-
vidual peak maps: red = fat (2880 cm‒1); 
blue = casein matrix aromatic side chains 
(3100 cm‒1); green = whey protein particles 
amide I band (1613 cm‒1). (We noted that the 
fat regions could also be readily identified by 
the characteristic peak at 1744 cm‒1; spectra 
not shown here.)

Figure 7. (A) K-means image of cheese with seven components using Manhattan distances (whey 
protein particles in orange). (B) K-means image of cheese with six components using Euclidean 
distances (whey protein particles in red).

A B
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individual samples were the spectra from every pixel in 
the image, i.e. an image of 50 µm2 with 200 × 200 pixels 
of data gathered, giving a total of 40,000 spectra. Two 
techniques were applied to compare the K-means clus-
tering: the Manhattan and Euclidean distance approaches, 
which differ in how they assess differences in data clus-
ters.

The Manhattan distance application was used in 
Figure 7A. This captures the distance between two 
points by aggregating the pairwise absolute difference 
between each variable. The Euclidean distance applica-
tion was used in Figure 7B. This captures the same infor-
mation by aggregating the squared difference for each 
variable. Given the mathematics used, the Manhattan 
distance approach places less emphasis on outliers. The 
Manhattan approach required seven clusters to detect 
the whey protein particles as being separate from the 
other components in the image data. In contrast, using 
the Euclidean method on the same original image data, 
only six clusters were needed to detect the whey protein 
particles. When we compared the images from the use 
of these methods, we also detected certain changes in 
the distributions of components in other parts of the 
image, mainly around the interfaces between fat and 
protein. This reflects small but detectable differences 
within component types such as fat morphology (where 
the mobility of acyl chains varies) and also different 
secondary structures in proteins, expressed as changes 
in the amide I and amide III regions. We also noted that 
the average spectral information from each cluster was 

not well defined and showed mostly a differentiation in 
fat concentrations and structures with protein bands not 
being well defined in some spectral regions, which made 
it difficult to elucidate the secondary protein structures in 
the amide regions of the spectra.

Two alternative methods to K-means clustering were 
also applied to the image data: MCR-ALS and NMF. 
Unsupervised MCR-ALS is commonly used to analyse 
spectral image data; in this case, it proved to differentiate 
the three components of interest in the cheese matrix 
easily by applying a minimum of three end members to 
the algorithm.16,17 Although smaller fat globules appear to 
be contained within the casein component map instead 
of the fat component map, as in Figure 8, this could 
possibly be resolved by further chemometric techniques 
that were not investigated in this study. Examination of 
the spectra show the complete absence of water signals 
in the region 3100–3550 cm–1 in the fat (red) spectra 
along with indicative carbonyl signal from the fat triglyc-
eride at 1740 cm–1. The whey and casein spectra are 
distinguished, as indicated in Figures 4B and 5. MCR-ALS 
methods have the additional benefit of estimating the 
concentrations of any of the defined components in any 
pixel of an image and are useful for interrogating the 
proportionate mix of the resulting spectral image data, 
and we suggest they are worth further investigation 
with more advanced constrained MCR-ALS methods in 
the future. The third multivariate method applied was 
unsupervised NMF, which allowed a constraint of non-
negativity to be applied in the algorithm. Non-negativity 

Figure 8. Cheese image and associated spectra using MCR-ALS: whey protein particles = green; fat = red; main casein 
matrix = blue.

A B
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allows the data components to more fully explain the 
spectral variation at each pixel.

The NMF algorithm appears to give more defined spec-
tral data from the resulting components than K-means 
clustering: it allowed better insights from analysing the 
differences between spectra generated from each final 
component, as seen in Figure 9. However, we note that it 
took five components to extract the whey protein parti-
cles as opposed to three components with the MCR-ALS 
method. NMF used fewer components than the K-means 
clustering method; it also afforded better information on 
the spectral differences between mapped components. 
This allowed imaging of the whey protein particles, as 
well as of the whey protein and casein, illustrating their 
distribution from the differentiation in their amide bond 
structures and aromatic side chain composition; also of 
interest is the distribution of whey protein around the 
interface of the fat globules.

In general, we found that applying unsupervised 
methods led to slight variations in the results, depending 
on the image or ROI analysed. Both K-means clustering 
and NMF took more end members to extract the whey 
protein particles, with NMF extracting some major differ-
ences in fat fractions before the differences within any 
protein components. In contrast, K-means clustering 
appeared to extract differences around the interface of 
the fat and casein protein phase before the differences 
between whey protein and casein with less differentia-
tion in the spectral data. NMF gave satisfactory spectral 
and structural differentiation and allowed interrogation 

of the spectral data efficiently, whereas the average 
spectral information using K-means proved spectra to 
be poorly differentiated when comparing differences 
between average cluster spectra for the various algo-
rithms. In contrast, MCR-ALS gave good spectral data 
but on occasion generated very noisy average spectra, 
so we considered it not as reliable for interpreting 
spectral differences. While we would note that the 
changes in the spectral data from fat appear to be more 
pronounced than those from the protein in this model 
cheese sample, in cheese production and use differences 
in protein distribution can have major implications and 
is our focus in this research. The ability to use a combi-
nation of peak mapping, K-means and NMF clustering 
approaches allows the differentiation of subtle spectral 
differences between whey and casein and also suggests 
that with Raman microscopy we can understand protein 
secondary structure variation that may contribute to 
cheese  attributes.

Conclusions
The results showed that Raman confocal imaging tech-
niques could readily differentiate the whey protein parti-
cles in a model cheese matrix composed of casein and fat 
by either peak interval mapping or multivariate clustering 
methods. Unconstrained MCR-ALS gave satisfactory 
image reconstruction of the sample, but in-depth analysis 
of the associated spectral data and detailed interrogation 

Figure 9. NMF map and associated spectral data of an ROI in the whey protein particle sample: whey protein = 
green; fat = red; casein = blue.

A B
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of the image illustrated that the distribution of compo-
nents was not well defined. NMF gave better results, 
with more defined spectral information for mapped 
components. In particular, the amide I and amide III 
bands illustrated that the whey protein particles were 
rich in β-sheet structures, in comparison with the casein 
matrix in the model cheese. Overall, of the multivariate 
methods, NMF was found to be superior, as it better 
distinguished clusters in the complex cheese matrix. The 
use of a range of approaches has benefits in terms of an 
ability to apply Raman imaging to match chemical distri-
bution to structure. The further investigation of compo-
sitionally well-understood cheese systems to strengthen 
this link will be a focus of our future research. We note 
that, because of the variability in the results depending 
on the algorithm used, we suggest that a thorough inves-
tigation of a range of image mapping algorithms and their 
application is required to gain insights from the Raman 
image data of complex systems such as cheese.
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