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The objective of this study is to compare portable visible spectral imaging (443–726 nm) and conventional RGB imaging for detecting products 

stored beyond the recommended “use-by” date and predicting the number of days poultry products have been stored. Packages of chicken thighs 

with skin on were stored at 4 °C and imaged daily in pack through plastic lidding film using spectral and RGB imaging over 10 days. K-nearest 

neighbour (KNN) models were built to detect poultry stored beyond its recommended “use-by” date and partial least squares regression (PLSR) 

models were built to predict the storage day of samples. Model overfitting in the spectral PLSR model was prevented using a geostatistical 

approach to estimate the number of latent variables (LV). All models were built at the object level by using mean spectra and colour values per 

image. The KNN model built using spectral images (acc. = 93 %, sen. = 75 %, spec. = 100 %) was more suitable than the model built using RGB images 

(acc. = 80 %, sen. = 42 %, spec. = 96 %) for detecting poultry stored beyond its “use-by” date. The PLSR model built using spectral images (R2 = 0.78, 

RMSEC = 0.92, RMSEV = 1.11, RMSEP = 1.34 day) was more suitable than the model built using RGB images (R2 = 0.60, RMSEC = 1.66, RMSEV = 1.67, 

RMSEP = 1.92 day) for predicting storage day of poultry products.
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Introduction
For highly perishable foods, such as poultry, reliably 
determining the amount of time a product has been 
stored is a matter of both product quality and consumer 
safety. As the storage time of poultry products increases, 

the meat begins to deteriorate and microbial growth 
occurs.1 Beyond a certain point, the meat is considered 
spoiled and no longer fit for human consumption.2 In 
the European Union, the shelf life of poultry products 
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is declared by a “use-by” date as a recommendation for 
consumers to ensure optimal safety and product quality 
in accordance with Regulation (EU) No. 1169/2011. The 
“use-by” date is a prediction made based on predictive 
microbiology, laboratory analysis and sensory analysis.3 
Current methods of verifying poultry quality and safety 
are destructive and occur prior to products reaching 
the retail level (e.g., bacterial plating, chemical assays, 
sensory panels). Many extrinsic factors can affect the 
shelf life of poultry, including temperature, gas atmos-
phere, relative humidity and manufacturing hygiene 
practices.4 Although the predicted “use-by” dates 
attempt to take these extrinsic factors into account, 
the actual shelf-life of products varies.1,4 Spectral 
imaging and RGB imaging have potential to be used as a 
non-destructive tool to quickly identify poultry products 
beyond their recommended “use-by” date and predict 
the number of days poultry products have been stored.

Spectral cameras measure the complete spectral 
signature within a defined wavelength range, allowing 
for the identification of a sample’s chemical composition. 
Rather than capturing a complete spectral signature, 
RGB cameras are limited to capturing the relative 
intensities of red, green and blue colours (Figure 1). 
Reduction of the spectral signature to three colours 
results in the loss of information potentially relevant to 
sample identification. Although the increased spectral 
resolution of spectral cameras can result in more 
robust models than RGB imaging,5 recent advances in 
machine vision technology have allowed for impressive 
RGB imaging applications in the field of food quality 
monitoring (e.g. prediction of mango ripening quality,6 
assessing fish quality7 and determining avocado 
ripeness using smartphone images.8 Both imaging 
techniques are fast and non-destructive. The objective 
of this study is to compare portable spectral imaging in 
the visible range and RGB imaging for detecting poultry 

products beyond their “use-by” date and predicting 
the number of days they have been stored without 
removing products from packaging. Because this study 
follows the same packages over time, it was not possible 
to conduct destructive microbiological experiments 
to confirm the “use-by” status. If consumers could 
non-destructively identify products that behave like 
those beyond their recommended “use-by” date, they 
could avoid consuming products of lesser quality and 
safety.

Methods and materials
Poultry samples
Packages of chicken thighs with skin on (npackages = 12) 
from cereal fed chickens were acquired from a local 
supermarket and stored at 4 °C for the duration of this 
experiment. The reference “use-by” date is defined by 
the supermarket label, which corresponds to day 7 of 
imaging. Packages were removed from 4 °C directly 
prior to imaging and returned to 4 °C immediately 
after imaging. Samples were imaged in their original 
modified atmosphere packaging (MAP) through the 
polyethylene terephthalate (PET) plastic lidding film 
sealing the top of the packaging tray. Each package 
was imaged once daily for a total of 10 days, resulting 
in a total of 120 images.

Imaging system
Spectral images were acquired using a portable Specim 
IQ camera system (Specim Ltd, Oulu, Finland) using white 
LED Venus V29C ring light illumination (Guangdong 
Nanguang Photo&Video Systems Co., Ltd, Shantou, China) 
around the lens of the camera. The dimensions of the 
resulting spectral images were 512 rows × 512 columns × 
204 spectral bands. The spectral camera was positioned 
directly above the sample at a height of 46 cm, resulting 
in a pixel size of approximately 0.49 × 0.49 mm. Along 
with capturing the spectral image, the portable Specim 
IQ camera system contains a 5 MP colour camera, which 
produces an RGB image.

Software
The software used to acquire spectral images was Specim 
IQ Studio (Specim Ltd, Oulu, Finland). All data analysis 
was completed using MATLAB R2020b (MathWorks, 
Massachusetts, USA) using functions written in house 
along with functions from the Statistics and Machine 
Learning Toolbox and the Image Processing Toolbox.

Figure 1. Example of data collected by spectral imaging 
(a) and RGB imaging (b).
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Data pre-treatment
The spectral range of spectral images was cropped to 
443–726 nm, to match the spectral range of the LED 
illumination. Spectra were then pre-treated by standard 
normal variate (SNV) pre-processing followed by 
Savitzky–Golay (SG) smoothing (13-point window size, 
2nd order, 1st derivative) to reduce variability introduced 
by scattering effects of polymer films.9 RGB images were 
converted to the CIE L*a*b* colour space. To reduce vari-
ation due to shadows, only a* and b* values were used 
for data analysis. This is in agreement with guidelines for 
meat colour evaluation published by the American Meat 
Science Association Committee, which recommends the 
use of the CIE L*a*b* colour space to evaluate meat, 
because the a* and b* values are particularly informative 
about meat discolouration.10

Image segmentation
Both spectral and RGB images were manually cropped 
to exclude the background and sticker labels on top of 
the lidding films. Oversaturated pixels due to glare were 
masked out using a manual threshold. Spectral images 
were then masked to segment chicken from the plastic 
tray by Otsu’s method of automatic threshold selec-
tion on the score image of the first principal component 
(PC1).11 RGB images were masked using Lazy Snapping 
graph-based segmentation to mask chicken from the 
plastic tray.12

Data analysis
Detecting poultry products beyond “use-by” date
For both spectral and RGB image sets, images were split 
by randomly assigning images from eight packages to the 
calibration set (nimages = 80) and from a separate four pack-
ages to an independent test set (nimages = 40). As Day 7 
corresponds to the “use-by” date, images from Days 1 to 
7 are classified as before “use-by” and images from Days 
8–10 are classified as after “use-by”. KNN models (K = 5) 
using Euclidean distances were applied to the spectral 
and RGB calibration sets, and evaluated using five-fold 
cross validation to calculate accuracy. The value of K was 
chosen based on the number of neighbours that resulted 
in the highest cross-validation accuracy in the calibration 
set. Next, the same KNN model parameters were used on 
the independent test set to validate the accuracy, sensi-
tivity and specificity of the model. The models were built 
and tested at the object level using mean spectra and 
a*b* values. Next, the respective models were applied at 
the pixel level to images in the test set to visually assess 
model prediction.

Predicting poultry product storage day
The same calibration sets (nimages = 80) used to detect 
poultry products beyond their “use-by” date were retained 
for both spectral and RGB image sets. However, images 
from two packages in the former test set were allocated 
to a validation set (nimages = 20) used to pick the number 
of latent variables (LV) to be included in the models. The 
remaining two packages were used as the independent 
test set (n = 20). PLSR models were built using the cali-
bration set and evaluated using the test set based on 
R2, RMSEC and RMSEP values. To prevent model overfit-
ting in PLSR models built using spectral data, a geostatis-
tical approach was used to estimate the number of LV to 
be included in the model using the validation set.13 This 
approach uses the spatial distribution of prediction maps 
to inform the optimal number of LV to be used in the cali-
bration of the model. All 20 chicken spectral images from 
the validation set were concatenated for this analysis. The 
background platform and labels were masked out of the 
image using the masks obtained in the previous image 
segmentation step. Prediction maps from 1 to 12 LVs were 
obtained from this validation concatenated image. Three 
spatial indexes were extracted from each prediction map: 
total variance in the image [Var(I^)], spatially structured 
variance C1 and random unstructured variance, C0. In 
essence, this method demonstrates that under certain 
assumptions, C1 is related to the slope or “sensitivity” of 
the model, while C0 reflects the random noise introduced 
by the model. In this case, it needs to be assumed that 
the true concatenated image, this is, the image that would 
represent the spoilage in chicken samples for each pixel, 
is expected to be spatially structured. These differences 
in chicken spoilage are expected to be prompted both by 
“use-by” date and by differences within each individual 
chicken thigh. This means that we expect pixels that are 
close (adjacent) to each other to have similar “decay” char-
acteristics, while differences in “decay” values would mani-
fest as contrast between areas of pixels that are further 
apart, this is, as spatially structured variance. The higher 
the variance between the predicted values of pairs of 
pixels that are spatially close, the higher the noise that is 
assumed to have been introduced by the model. This high 
frequency variance is quantified by C0 (unstructured vari-
ance of the prediction map). In addition, it is assumed that 
the greater the spatially structured variance found in the 
image, the more the model is able to reflect differences in 
chicken spoilage. In other words, it is assumed that most 
of the spatially structured differences in the prediction 
maps can be attributed to differences in chicken spoilage.  
The spatially structured variance is quantified by C1 as 
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the difference between the total variance, Var(I^), and C0. 
Further explanations and mathematical demonstrations 
behind this method are detailed by Herrero-Langreo et al.13

Finally, the respective models were applied pixel-
wise to spectral and RGB images to visually assess the 
differences between the model predictions. Estimating 
LV was not required for RGB data, as the dataset contains 
only two predictor variables (i.e. a* and b* values).

Results
Detecting poultry products beyond “use-by” 
date
For both spectral and RGB imaging, changes in mean 
reflectance and a*b* values could be observed over 
storage time (Figure 2). Mean object spectra were most 
noticeably different between 443 nm and 660 nm. Mean 
spectra of samples stored beyond their “use-by” date lack 
peaks at 550 nm and 650 nm. Additionally, the peak at 
592 nm is lower and shifted to 602 nm, lower at 493 nm 
and higher between 443 nm and 450 nm in comparison 
with samples before their use-by date. Although less 
noticeable, a difference between RGB values can be seen 
before and after the “use-by” date in the red and green 
channels. The separation can be better seen when images 
are converted to the CIE L*a*b* colour space.

The KNN model built using spectral images resulted 
in high accuracy in both the calibration (93.8 %) and 
test (92.5 %) sets, indicating reasonably good ability to 
detect poultry products stored beyond their “use-by” 
date (Table 1). The KNN model built using RGB images 
was reasonable, though inferior to the spectral model, 
with lower accuracy in both the calibration (87.5 %) and 
test (80 %) set (Table 1). In the model built using spectral 
imaging, all cases of misclassification occurred on the 
first day following the “use-by” date (Day 8). Meanwhile, 
the RGB model resulted in cases of misclassification on 
all days following the “use-by” date. For both imaging 
methods, sensitivity was lower than specificity, indicating 
samples before their “use-by” date are more likely to be 
correctly identified than samples after their “use-by” date.

When the KNN models were applied to their respective 
test sets at the pixel level, spectral imaging resulted in a 
clearer separation between samples before and after 
their “use-by” date (Figure 3). More areas were classified 
incorrectly as after the “use-by” date in the RGB test set 
than in the spectral test set, which is supported by the 
confusion matrix results (Figure 4). Visually, these areas 
tend to be on the edges of individual samples.

Predicting poultry product storage day
When samples are identified by storage day, sample 
mean spectra and RGB values gradually move from 

Figure 2. Mean reflectance spectra (a), RGB (b), L* values (c) and a* and b* values (d) 
of packaged chicken thighs before and after “use-by” date indicated by store label.
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Calibration set (n = 80) Test set (n = 40)
Accuracy (%) Accuracy (%) Sensitivity (%) Specificity (%)

Spectral imaging 93.8 92.5 75.0 100
RGB imaging 87.5 80.0 41.7 96.4

Table 1. Accuracy (%), sensitivity (%) and specificity (%) of KNN models (K = 5) at the object level in the calibration 
and test sets.

Figure 3. Maps predicting samples imaged before and after “use-by” date (Day 7*) of packages in the 
test set on a pixel-level using spectral and RGB imaging.

Figure 4. Confusion matrix showing differences of KNN model (K = 5) prediction between true and predicted class 
at the object level in the test set.
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behaving like samples before to after their “use-by” date 
with each increasing storage day (Figure 5). In the spec-
tral data set, this includes a gradual increase of the peak 
between 443 nm and 660 nm, decrease of the peak at 
592 nm and shift to 602 nm, and decrease at 650 nm 
with increasing storage day. Several spectra of samples 
imaged on the recommended “use-by” date behave more 
like those stored beyond their shelf-life, while others are 
visibly more similar to spectra of samples before their 
“use-by” date, indicating heterogeneity in the sample 
set. This is in agreement with the results of the KNN 
prediction maps (Figure 3), where pixels on the 2nd and 
4th packages continue to be classified as before the “use-
by” date on day 8 and many pixels on the 3rd package 
show mixed prediction between days 6 to 7. For the RGB 
data set, particularly in the red and green channels, RGB 
values decrease with increasing storage time. The trend 
of decreasing values with storage age can be better seen 
when images are converted to the CIE L*a*b* colour 
space.

Figure 6 shows Var(I^), C0 and C1 values used to estimate 
the number of latent variables (LV) to include in the PLSR 
models. For 1 and 2 LV both the spatially unstructured 
variance C0 and the spatially structured variance C1 
are very low (C0 < 0.1 and C1 < 6.17). This indicates that 
while the random error introduced by the model is very 

close to 0, the variance gathered by the model is also 
very low. This is a typical indication of an under-fitted 
model (too few LV). From 4 to 7 LV, C0 is moderately low 
(C0 < 2.7) while C1 values stabilise at a local maximum 
plateau (between 15.2 and 16.2). Thus, for this interval, 
the structured information gathered by the model is at 
its highest, while the random error introduced by the 
model remains low. Within this interval, maximum C1 is 
found at 5 LV (16.2) and 7 LV (15.8). From this result and 
considering that model calibrations with fewer LV are 
usually preferrable to avoid overfitting and promote more 
robust models, 5 LV could be selected as the optimum LV 
number. From 8 LV to 12 LV, C0 increases dramatically 
while C1 decreases, indicating that adding more LV to 
the model is both increasing the random error introduced 
by the model and decreasing the structured variance 
gathered by the model.

The 5 LV PLSR model built using spectral images 
resulted in R2 = 0.78, RMSEC = 0.92, RMSEV = 1.11 and 
RMSEP = 1.34, indicating there is a trend of changing 
spectra with increased storage time (Table 2). The PLSR 
model built using RGB images was inferior to the spectral 
model, with R2 = 0.60, RMSEC = 1.66, RMSEV = 1.67 and 
RMSEP = 1.92 (Table 2). Based on the regression vector 
(β) of the spectral PLSR model, the most important 
wavelengths in decreasing order of importance for 

Figure 5. Mean reflectance spectra (a), RGB (b), L* values (c) and a* and b* values 
(d) of packaged chicken thighs over 10 days of storage. Day 7* corresponds to the 
“use-by” date indicated by the store label.
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is important for storage day prediction. The colour of 
poultry tissues is dependent on the redox form of the 
oxygen supplying protein, myoglobin.15,16 Lipid oxidation 
during storage results in myoglobin oxidation and subse-
quent colour change.17–19 When meat is first exposed to 
air, deoxymyoglobin oxidises to cherry-red oxymyoglobin, 
then to a brownish-red metmyoglobin within a week of 
storage.19 The regression coefficients that contribute the 
most to the PLSR model are similar to those attributed to 
deoxymyoglobin and metmyoglobin in the literature.16,20 
Although these are changes occurring in the visible wave-
length region, they are not intuitive for human inspectors 
to interpret by eye alone.

predicting storage day are 487, 628, 631, 640, 637, 484, 
490, 634, 446 and 492 nm (Figure 7).

When the PLSR models were applied to their respective 
test sets at the pixel level, spectral imaging resulted in a 
clearer trend of increasing storage days than RGB imaging 
(Figure 8). Individual chicken thighs show a trend of faster 
aging around the edges of samples in both the spectral 
and RGB data set.

Discussion
As poultry products age, chemical and microbiological 
changes occur associated with meat deterioration.2,14 
Since both the spectral KNN and PLSR models both 
observed a change in spectra with increased storage time 
using data collected in the visible light region, this work 
confirms that the colour change of meat during storage 

Figure 6. Geostatistical indexes, C0, C1 and total variance [Var(I^)] of the concatenated 
prediction maps from 1 to 12 latent variables obtained from the validation dataset concate-
nated image.

Figure 7. Vector of coefficients (β) of the PLSR model 
built using spectral images.

Figure 8. Maps predicting samples imaged before and 
after “use-by” date (Day 7*) of packages in the test set on 
a pixel-level using spectral and RGB imaging.
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When the KNN and PLSR models were applied at a 
pixel level to create prediction maps, many pixels are 
incorrectly predicted. Pixels closest to the midpoints 
of individual chicken pieces are more likely to be 
misclassified as having a lower storage day than those on 
the edges. This could be due to exposed perimeters of 
individual chicken pieces aging at a faster rate than the 
centres. When chicken thighs are processed, they are 
cut at the joints on both sides of the thigh bone creating 
“cut-muscle” surfaces susceptible to faster spoilage.2,19 
As more meat is exposed to air, lipid oxidation could 
occur at a higher rate around the perimeter of samples. 
If the models are classifying based on the colour changes 
observed during myoglobin oxidation, this could explain 
the observed variability in pixel-wise model predictions. 
Another possible reason for differences in prediction 
between centres and perimeters of individual chicken 
thighs could be related to curvature induced effects on 
spectra. Due to the curved nature of individual chicken 
thighs in relation to the illumination source, unwanted 
light scattering occurs and can potentially contribute to 
misclassification of pixels.

Conclusion
Portable visible spectral imaging was determined to be 
more suitable than RGB imaging for both predicting 
samples beyond their recommended “use-by” date and 
the storage day of poultry products. The KNN model 
built using spectral images resulted in higher accuracy, 
sensitivity and specificity than the model build using RGB 
images. The predictive PLSR model built using spectral 
images had a higher R2 and lower RMSE values than the 
PLSR model built using RGB images. Successful predic-
tion is likely a consequence of colour changes due to 
myoglobin oxidation during storage. The colour changes 
were too subtle for RGB imaging to successfully predict 
day of storage. In future work, microbiological spoilage 
will be monitored using bacterial counts to serve as a 
more direct reference method for spoilage. These find-
ings indicate that spectral imaging could potentially be 

used as non-destructive, fast alternative to conventional 
methods for evaluating poultry products and validating 
“use-by” date expectations set by predictive microbi-
ology.

Acknowledgements
Funding for this project was provided by the Department 
of Food Agriculture and the Marine (Grant No. 17/F/275), 
under the Food Institutional Research Measure (FIRM) and 
Science Foundation Ireland (SFI) under the investigators 
programme Proposal ID 15/IA/2984-HyperMicroMacro.

Declarations of interest: None

References
1. S.M. Yimenu, J. Koo, B.S. Kim, J.H. Kim and J.Y. Kim, 

“Freshness-based real-time shelf-life estimation of 
packaged chicken meat under dynamic storage con-
ditions”, Poult. Sci. 98(12), 6921 (2019). https://doi.
org/10.3382/ps/pez461

2. G. Mead, Poultry Meat Processing and 
Quality. Elsevier (2004). https://doi.
org/10.1533/9781855739031

3. Food Safety Authority of Ireland, Validation of 
Product Shelf-Life (Revision 4), 18(4). Dublin (2019).

4. S. Bruckner, A. Albrecht, B. Petersen and J. 
Kreyenschmidt, “Influence of cold chain interrup-
tions on the shelf life of fresh pork and poultry”, Int. 
J. Food Sci. Technol. 47(8), 1639 (2012). https://doi.
org/10.1111/j.1365-2621.2012.03014.x

5. M. Taghizadeh, A. Gowen, P. Ward and P. O’Donnell, 
“Use of hyperspectral imaging for evaluation of the 
shelf-life of fresh white button mushrooms (Agaricus 
bisporus) stored in different packaging films”, Innov. 
Food Sci. Emerg. Technol. 11, 423 (2010). https://doi.
org/10.1016/j.ifset.2010.01.016

6. V. Eyarkai Nambi, K. Thangavel, S. Shahir and V. 
Thirupathi, “Comparison of various RGB image 
features for nondestructive prediction of ripening 

R2 RMSEC RMSEV RMSEP LV
Spectral imaging 0.78 0.92 1.11 1.34 5
RGB imaging 0.60 1.66 1.67 1.92 2

Table 2. Results of PLSR models (R2, RMSEC, RMSEV, RMSEP) and number of latent varia-
bles (LV) used for predicting storage day of poultry products using portable visible spectral 
imaging and RGB imaging.

https://doi.org/10.3382/ps/pez461
https://doi.org/10.3382/ps/pez461
https://doi.org/10.1533/9781855739031
https://doi.org/10.1533/9781855739031
https://doi.org/10.1111/j.1365-2621.2012.03014.x
https://doi.org/10.1111/j.1365-2621.2012.03014.x
https://doi.org/10.1016/j.ifset.2010.01.016
https://doi.org/10.1016/j.ifset.2010.01.016


A. Swanson, A. Herrero-Langreo and A. Gowen, J. Spectral Imaging 10, a6 (2021) 9

quality of ‘alphonso’ mangoes for easy adoptabil-
ity in machine vision applications: a multivariate 
approach”, J. Food Qual. 39(6), 816 (2016). https://
doi.org/10.1111/jfq.12245

7. M. Dowlati, M. de la Guardia, M. Dowlati and 
S.S. Mohtasebi, “Application of machine-vision 
techniques to fish-quality assessment”, TrAC - 
Trends Anal. Chem. 40, 168 (2012). https://doi.
org/10.1016/j.trac.2012.07.011

8. B.H. Cho, K. Koyama, E. Olivares Díaz and S. Koseki, 
“Determination of ‘hass’ avocado ripeness during 
storage based on smartphone image and machine 
learning model”, Food Bioprocess Technol. 13(9), 
1579 (2020). https://doi.org/10.1007/s11947-020-
02494-x

9. A.A. Gowen, C. Esquerre, C.P. O’Donnell and G. 
Downey, “Influence of polymer packaging films 
on hyperspectral imaging data in the visible–
near-infrared (450–950 nm) wavelength range”, 
Appl. Spectrosc. 64(3), 304–312 (2010). https://doi.
org/10.1366/000370210790918337

10. M. Hunt, J. Acton, R. Benedict, C. Calkins, D. 
Cornforth, L. Jeremiah, D. Olson, C. Salm, J. Savell 
and S. Shivas, American Meat Science Association 
Guidelines for Meat Color Evaluation. National Live 
Stock and Meat Board (1991). https://meatscience.
org/docs/default-source/publications-resources/
rmc/1991/guidelines-for-meat-color-evaluation.
pdf?sfvrsn=1338bbb3_2 [Accessed: 30 September 
2021]

11. N. Otsu, “A threshold selection method from 
gray-level histograms”, IEEE Trans. Syst. Man. 
Cybern. 9(1), 62 (1979). https://doi.org/10.1109/
TSMC.1979.4310076

12. Y. Li, J. Sun, C.K. Tang and H.Y. Shum, “Lazy snap-
ping”, ACM Trans. Graphics 23(3), 303–308 (2004). 
https://doi.org/10.1145/1015706.1015719

13. A. Herrero-Langreo, N. Gorretta, B. Tisseyre, A. 
Gowen, J.L. Xu, G. Chaix and J.M. Roger, “Using 

spatial information for evaluating the quality of pre-
diction maps from hyperspectral images: a geosta-
tistical approach”, Anal. Chim. Acta 1077, 116 (2019). 
https://doi.org/10.1016/j.aca.2019.05.067

14. L. Kozačinski, Ž.C. Fleck, Z. Kozačinski, I. Filipović, 
M. Mitak, M. Bratulić and T. Mikuš, “Evaluation of 
shelf life of pre-packed cut poultry meat”, Vet. Arh. 
82(1), 47 (2012).

15. D.L. Fletcher, “Poultry meat quality”, World. Poultry 
Sci. J. 58(2), 131 (2002). https://doi.org/10.1079/
WPS20020013

16. J. Tang, C. Faustman and T.A. Hoagland, “Krzywicki 
revisited: equations for spectrophotometric deter-
mination of myoglobin redox forms in aqueous meat 
extracts”, J. Food Sci. 69(9), C717 (2004). https://doi.
org/10.1111/j.1365-2621.2004.tb09922.x

17. C. Faustman, Q. Sun, R. Mancini and S.P. Suman, 
“Myoglobin and lipid oxidation interactions: mecha-
nistic bases and control”, Meat Sci. 86(1), 86 (2010). 
https://doi.org/10.1016/j.meatsci.2010.04.025

18. J.Y. Jeong, G.D. Kim, H.S. Yang and S.T. Joo, “Effect 
of freeze-thaw cycles on physicochemical proper-
ties and color stability of beef semimembranosus 
muscle”, Food Res. Int. 44(10), 3222 (2011). https://
doi.org/10.1016/j.foodres.2011.08.023

19. S.P. Suman and P. Joseph, “Myoglobin chemis-
try and meat color”, Annu. Rev. Food Sci. Technol. 
4(1), 79 (2013). https://doi.org/10.1146/annurev-
food-030212-182623

20. Y. Liu, F.E. Barton, B.G. Lyon, W.R. Windham and 
C.E. Lyon, “Two-dimensional correlation analysis of 
visible/near-infrared spectral intensity variations of 
chicken breasts with various chilled and frozen stor-
ages”, J. Agric. Food Chem. 52(3), 505 (2004). https://
doi.org/10.1021/jf0303464

https://doi.org/10.1111/jfq.12245
https://doi.org/10.1111/jfq.12245
https://doi.org/10.1016/j.trac.2012.07.011
https://doi.org/10.1016/j.trac.2012.07.011
https://doi.org/10.1007/s11947-020-02494-x
https://doi.org/10.1007/s11947-020-02494-x
https://doi.org/10.1366/000370210790918337
https://doi.org/10.1366/000370210790918337
https://meatscience.org/docs/default-source/publications-resources/rmc/1991/guidelines-for-meat-color-evaluation.pdf?sfvrsn=1338bbb3_2
https://meatscience.org/docs/default-source/publications-resources/rmc/1991/guidelines-for-meat-color-evaluation.pdf?sfvrsn=1338bbb3_2
https://meatscience.org/docs/default-source/publications-resources/rmc/1991/guidelines-for-meat-color-evaluation.pdf?sfvrsn=1338bbb3_2
https://meatscience.org/docs/default-source/publications-resources/rmc/1991/guidelines-for-meat-color-evaluation.pdf?sfvrsn=1338bbb3_2
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1145/1015706.1015719
https://doi.org/10.1079/WPS20020013
https://doi.org/10.1079/WPS20020013
https://doi.org/10.1111/j.1365-2621.2004.tb09922.x
https://doi.org/10.1111/j.1365-2621.2004.tb09922.x
https://doi.org/10.1016/j.meatsci.2010.04.025
https://doi.org/10.1016/j.foodres.2011.08.023
https://doi.org/10.1016/j.foodres.2011.08.023
https://doi.org/10.1146/annurev-food-030212-182623
https://doi.org/10.1146/annurev-food-030212-182623
https://doi.org/10.1021/jf0303464
https://doi.org/10.1021/jf0303464

