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Hyperspectral unmixing (HU) is one of the most active emerging areas in image processing that estimates the hyperspectral image’s endmember 

and abundance. HU enhances the quality of both spectral and spatial dimensions of the image by modifying the endmember and abundance 

parameters of the hyperspectral images. There are several HU algorithms available in the literature based on the linear mixing model (LMM) that 

deals with the microscopic contents of the pixels in the images. Non-negative matrix factorisation (NMF) is the prominent method widely used 

in LMMs that simultaneously estimates both the endmembers and abundances parameters along with some residual factors of the image to 

improve the quality of unmixing. In addition to this, the quality of the image is enhanced by incorporating some constraints to both endmember 

and abundance matrices with the NMF method. However, all the existing methods apply any of these constraints to the endmember and abun-

dance matrices by considering the linearity features of the images. In this paper, we propose an unmixing model called joint extrinsic and intrinsic 

priors with L1/2 norms to non-negative matrix factorisation (JEIp L1/2-NMF) that applies multiple constraints simultaneously to both endmember 

and abundance matrices of the hyperspectral image to enhance its quality. Three main external and internal constraints such as minimum volume, 

sparsity and total variation are applied to both the endmembers and abundance parameters of the image. In addition, a L1/2-norms is imposed to 

extract good quality spectral data. Therefore, the proposed method enhances spatial as well as spectral data and considers the non-linearity of the 

pixels in the image by adding a residual term to the model. Performance of our proposed model is measured by using different quality measuring 

indexes on four benchmark public datasets and found that the proposed method shows outstanding performance compared to all the conventional 

baseline methods. Further, we also evaluated the performance of our method by varying the number of endmembers empirically and concluded 

that less than five endmembers provides high-quality spectral and spatial data during the unmixing process.

Keywords: hyperspectral unmixing, JEIp L1/2-NMF, minimum volume, non-linear mixing model (NLMM), non-negative matrix factorisation 
(NMF), sparsity, total variation
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Introduction
Hyperspectral imaging (HSI) captures a contiguous spec-
trum of wavelengths over a selected range of intervals for 
each pixel in the image. This feature increases the hyper-
spectral image with many more spectral bands compared 
to conventional imaging technology. The high spectral 
resolution of HSI strengthens its information storing 
ability which provides the mechanism for analysing the 
different characteristics of the materials present in the 
image at the pixel level of the captured image. This char-
acteristic of hyperspectral images makes this imaging 
model well suited to various applications like object iden-
tification, medical diagnosis, pattern recognition, remote 
sensing, agriculture, food safety etc. Each spectral band in 
hyperspectral images is divided into a narrow wavelength 
range, therefore, the amount of the energy collected by 
hyperspectral sensors per unit time is limited. Due to 
this narrow division of spectral bands in HSI, it is easily 
affected by noise during the time of acquisition. This may 
lead to reduction in the spectral and spatial quality of HSI. 
Nowadays, many algorithms have been introduced to 
improve the spectral and spatial quality of HSI. One way 
is to fuse the high spectral quality of HSI with high spatial 
quality images like RGB or multispectral imaging (MSI). 
The fusion between MSI and HSI gives better spatial 
quality for HSI because spectral correlation with these 
two images is high compared to conventional imaging 
modalities. From the literature, it seems that spectral 
unmixing based image fusion is an emerging, and one of 
the most effective, methods for enhancing spatial quality 
of HSI due to its complex structure of the images which 
contain multiple spectral bands.1

In HSI, each pixel in the images is a mixture of several 
kinds of materials of the scene and it is represented in 
a complex structure. Due to this complex structure, it 
is, practically, a challenging task to analyse in-depth 
or detailed hyperspectral images using conventional 
imaging systems. However, each spectral band in the 
hyperspectral images is divided into a narrow wave-
length range, therefore, the number of photons influ-
enced on the sensor per unit time is limited. This fact 
makes it impossible to acquire a high spatial resolution 
hyperspectral image both in space and time. Due to this 
lower resolution in the spatial data, each pixel in the 
hyperspectral image may be composed of several kinds 
of materials in the scene, called mixed pixel. This mixed 
pixel problem has a serious affect in the quantitative 
development of the spectral imaging field and also in 
various applications of computer technology. Therefore, 
it is necessary to identify and calculate the proportion of 

each spectral component present in the mixed pixels. This 
process of separating each mixed pixel is called spectral 
unmixing. Therefore, hyperspectral unmixing (HU) has 
been introduced to overcome this limitation. HU can be 
effectively utilised for analysing minute details of the 
pixel in the image. This method consists of three steps: 
selecting the desired number of endmembers from the 
scene, extracting spectral signatures of the selected 
endmembers and finally estimating the fractional 
abundances of these endmembers. The first spectral 
unmixing method is pansharpening. The pansharpening 
method includes a pixel-wise fusion between the spatial 
data of panchromatic (PAN) images with spectral data of 
multispectral images. The pansharpening methods are 
also extended for the fusion of hyperspectral and PAN 
images with the increasing availability of hyperspectral 
images. This hyperspectral-pansharpening causes some 
limitations during the fusion process due to the spectral 
trade-off between HSI and pansharpening. The hyper-
spectral-multispectral fusion method was introduced 
later. In hyperspectral-multispectral spectral unmixing 
based fusion, the unmixing process is applied on both 
hyperspectral images and multispectral images and 
then fuses the necessary data from these images. That 
means fusing high spectral resolution from hyperspec-
tral images and high spatial information from multispec-
tral images to reconstruct a high-quality hyperspectral 
image.

The spectral unmixing (SU) algorithm can be charac-
terised into two mixing models, namely the linear mixing 
model (LMM) and the non-linear mixing model (NLMM). 
These mixing models show how the materials in each pixel 
interact with each other and reflect when light falls on it 
to form the spectral signature. An analysis of the litera-
ture reveals that most of the existing baseline unmixing 
algorithms are based on the LMM. LMM considers only 
the macroscopic scale of mixing that estimate endmem-
bers, and their fractions abundance based on the single 
level reflection of light on each pixel in the hyperspec-
tral image. The NLMM considers the microscopic level 
of interaction, i.e it considers the multiple reflection of 
materials in the pixels, but requires a complex algorithm 
and more computational time. This complex informa-
tion obtained from NLMMs is not necessary in many 
real-life situations and may sometimes give inconsistent 
results due to the over-fitting nature of the data. In such 
a case, the simple LMM becomes more convenient model 
for analysing the multispectral pixel information in the 
image.2
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Recently, many LMM-based unmixing algorithms have 
been used to consider the basic non-linearity information 
of the pixels in the image. In this paper, we propose a 
non-negative matrix factorisation (NMF)-based LMM 
method for extracting the non-linear effects of the pixels 
in the image. The proposed method is built on the stan-
dard LMM with some regularisation parameters, viz. 
minimum volume (MV), total variation (TV) and sparsity 
constraints to both spectral and spatial features of the 
pixel information to accommodate the non-linear effects 
of the image.

NMF is an attractive and widely used model for the 
HU process.3 But in the NMF model, many minimum 
solutions occur locally due to its non-convexity nature. A 
non-convex optimisation problem has multiple feasible or 
minimum solutions. These multiple local minima make it a 
challenge to obtain a finite optimal solution of the NMF 
problem. Therefore, adding the abundance sum-to-one 
constraint (ASC) and abundance non-negative constraint 
(ANC) into the NMF solution space helps to alleviate the 
non-convexity situation. The ASC normalises the range of 
pixels in the image to unity and ensures the data distribu-
tion is equal in each pixel of the image. Similarly, the ANC 
reduces the complexity and provides faster convergence 
to the problem. To further shrink the solution space of the 
NMF model, it is necessary to add some more constraints 
to the spectral and spatial quality of the image.4

Recently, a number of papers have proposed constrained 
NMF by incorporating some additive terms to the original 
NMF-based LMM. But most of these existing NMF-based 
unmixing algorithms impose constraints on any one of 
the two matrices, namely in the endmember matrix or the 
abundance matrix. Imposing such constraints in only one 
matrix may cause some limitations in the quality of the 
unmixing process. Therefore, to improve the effective-
ness and accuracy of the NMF-based unmixing algorithm, 
in this paper we propose a model by adding constraints 
to both of the NMF matrices, such as endmember and 
abundance matrices.5

In this paper we introduce a new blind unmixing method 
called joint extrinsic and intrinsic priors with L1/2 norms 
to non-negative matrix factorisation (JEIp L1/2-NMF) to 
both the endmember and abundance matrices of the 
NMF model. The extrinsic priors of the hyperspectral 
image are based on the geometrical and intrinsic prior-
based statistical framework of the image. By imposing 
these two constraints or priors to the NMF model, ulti-
mately we aim to enhance the quality of the hyperspec-
tral image’s spectral as well as spatial data. In addition, 
we use L1/2 regularisation to the NMF method which 

provides sparse-based unmixing and yields a more accu-
rate estimation of spatial data.

The geometrical unmixing extracts endmember or 
pure pixels present in the spectral information of the 
hyperspectral image. This spectral information is acquired 
from the vertices of a simplex. A simplex is a minimum 
possible hypercube formed from the image’s data points 
called endmembers. This endmember determines the 
volume of the simplex, which is one of the essential prior 
considerations in spectral image analysis. To control the 
structural information and improve the unmixing perfor-
mance, choosing the simplex with MV is necessary. The 
centroid-based MV regulariser controls the distance 
between centre point and endmember vertex. This makes 
the selected endmember closer to the centre point of the 
simplex denoted by µ.6

In statistical SU, each pixel of the hyperspectral image is 
decomposed as a linear combination of pure endmember 
spectra. The estimation of pure endmember spectra is 
based on the posterior distribution of abundances and 
endmember parameters under a hierarchical Bayesian 
model.4 The statistical information depends on the abun-
dance or spatial quality of the image. In general, abun-
dance sparsity and smoothness are typical constraints 
applied on spatial data of the spectral images. In addition 
to this, our paper also addresses the non-linearity effects 
and L1/2-norms in the spatial data which helps to remove 
the zero value to a large extent. The non-linear effects 
account for the residual noise, spectral and spatial vari-
ability occurring in the specific locations of the image. 
These non-linear effects are named as outlier residual 
terms in the image.7

Related work
Recent works in the literature proposed many LMM 
unmixing algorithms by using NMF concepts. Lina 
Zhuang et al.6 proposed a non-negative matrix factori-
sation-quadratic minimum volume-based (NMF-QMV) 
in which they imposed a MV constraint to the unmixing 
algorithm. These MV constraints minimise the volume of 
simplex formed from the columns of endmember matrices 
by reducing the non-convexity problem and computa-
tional complexity during the optimisation process.

Yuan et al.8 proposed a hyperspectral image unmixing 
method named an improved collaborative non-nega-
tive matrix factorisation and total variation (ICoNMF-TV) 
algorithm to enhance the quality of the hyperspectral 
image. In this method, the authors introduced a total 
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variation (TV) regulariser for the abundance matrix to 
provide piecewise smoothness between adjacent pixels. 
This TV is calculated by computing the difference 
between adjacent pixels in horizontal and vertical direc-
tions. Therefore, this unmixing method enhances the 
spatial quality and promotes the performance and effi-
ciency of the HU algorithm.

Lei Zhou et al.9 proposed an NMF unmixing method 
based on spatial information by considering the original 
image into subspace structure which helps to capture 
detailed distribution of spatial information. This subspace 
structure helps to identify the globally distributed mate-
rials on different parts of the image. Finally, this method 
incorporates the sparse-NMF framework to consider the 
amount of sparsity in the abundance matrix. Therefore, 
this method improved the spatial quality as well as the 
performance of the unmixing algorithm.

Wei He et al.10 introduced a total variation regular-
ised reweighted sparse-NMF (TV-RSNMF) unmixing 
method. This method incorporates a reweighted sparse 
unmixing method which encourages more abundance 
map sparsity than the existing L1 norm method. In addi-
tion to this, the TV regulariser is also embedded into 
this method to provide spatial smoothness to the image. 
Thus TV-RSNMF provides piecewise smoothness and 
denoising to the abundance map of the hyperspectral 
image and hence our proposed method JEIp L1/2-NMF 
improves the visual quality to the hyperspectral image to 
a great extent.

Kewen Qu et al.11 proposed an unmixing algorithm, 
namely multiple-priors ensemble constrained NMF 
(MPEC-NMF). In this work, the NMF unmixing method 
combines both the geometrical and statistical prior of the 
hyperspectral image. The endmember matrix is imposed 
with MV constraints to strengthen spectral data quality 
using geometric prior. The statistical prior imposes TV 
constraints to provide a spatial smoothness and the spar-
sity constraints to account for the number of zero or null 
values in the abundance map. These two statistical priors 
are the most significant constraints applied to the abun-
dance matrix. Thus, the MPEC-NMF method incorpo-
rated all the essential constraints that enhance the spatial 
as well as spectral data of the hyperspectral image. But all 
these methods did not consider the non-linearity effects 
in the image. So, it is challenging to consider specific 
or localised areas such as the edges, the boundary of 
heterogeneous regions in the hyperspectral images.

Due to the simplicity of the LMM method, most of 
the existing unmixing algorithms use LMM-based NMF 
for the HU process. Moreover, the LMM-based NMF 

unmixing method provides a good approximation in many 
fundamental observations of the image. This behaviour 
makes the LMM a helpful technique for many applica-
tions. But all these existing LMM-based unmixing algo-
rithms available in the literature do not consider the 
fundamental non-linearity in the image. In some situa-
tions, such as sand-like scenes, incident light scattered 
and absorbed through multiple materials present in each 
pixel in the image may result in a non-linear effect. In 
such a situation, LMM may be inaccurate in handling 
the unmixing due to the non-linearity or outlier effects 
in the image. Therefore, it is necessary to consider the 
non-linear mixing concept during the HU process.7 So, 
the method that we are going to propose in this paper 
introduces a NMF-based LMM method by incorporating 
the non-linear effects described by adding some addi-
tional constraints to both the endmember and abun-
dance parameters of a conventional linear mixing model. 
The proposed method builds on the standard LMM, with 
some regularisation terms that enhance the accuracy of 
both spectral and spatial dimensions makes non-linear 
effects in the HU.

Dataset
In order to evaluate the efficiency and effectiveness of 
our proposed algorithm, we used four different hyper-
spectral data sets available online. The first dataset is 
the Washington DC Mall, a well-known dataset captured 
by the HYDICE sensor. This dataset contains an image 
of size 1278 × 307 pixels with 191 spectral bands with 
0.4–2.5 µm spectral range. Due to the large size of the 
image, we cropped it into a 240 × 240 pixels for our 
experiment.12 The second dataset is NEON Data, and 
this provides information on the National Observatory 
Networks San Joaquin Experimental Range field site. 
This image was collected over the San Joaquin field site 
located in California. The image selected for this exper-
iment consists of 500 × 500 pixels with 107 bands with 
0.4–0.85 µm spectral range.13 The third hyperspectral 
dataset is Pavia University captured by the reflective 
optics spectrographic imaging system (ROSIS-3) over the 
University of Pavia, northern Italy, in 2003. It consists of 
610 × 340 pixels with 103 bands with 0.430–0.838 µm 
spectral range. The image is cropped into 560 × 320-pixel 
size for our experiment.14 Finally, the fourth hyperspec-
tral image dataset, AVIRIS Indian Pines, was captured by 
the AVIRIS sensor over the Indian Pines test site in north-
western Indiana, USA, in 1992. The image consists of 
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512 × 614 pixels. The image selected for our experiment 
is cropped into 350 × 360-pixel size and 192 bands with 
wavelength ranges from 0.4 µm to 2.5 µm.15

Quality measures
The quality of hyperspectral images after various unmixing 
algorithms has been estimated based on endmember and 
abundance estimation accuracy using various perfor-
mance matrices presently available in the literature. The 
most commonly used such quality measures are spectral 
angle mapper (SAM), signal-to-reconstruction error (SRE), 
root-mean-square error (RMSE), peak signal-to-noise 
ratio (PSNR) and universal image quality index (UIQI). 
These five quality measures are used to determine the 
performance quality of our proposed JEIp L1/2-NMF algo-
rithm.15

Spectral angle mapper (SAM)
SAM identifies the spectral distortion between the esti-
mated spectra E and a ground truth spectrum  Ê  with 
n number of pixels. It measures the spectral similarity 
between the estimated and reference spectra by calcu-
lating the angle difference of the vectors between them 
as follows:

 ( )
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The arccosine defines the inverse cosine function of 
the given value. If higher, the spectral similarity between 
estimated spectra E and a ground truth spectrum  Ê SAM 
values are closer to zero. That means a SAM value near to 
zero indicates high spectral quality.16

Signal-to-reconstruction error (SRE)
The SRE measures the quality of the reconstructed image 
based on the accuracy of the estimated abundance 
data in the image. Using this parameter, we can decide 
the quality of the image as well as the efficiency of the 
proposed algorithm. The SRE is measured as follows,
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where the number of pixels denoted by n, and ˆ
iA  and 

Ai denote the abundance vectors of the estimated and 
original image at the ith pixel. The larger the SRE value, the 
higher the spatial quality of the image.5

Root-mean-square error (RMSE)
The RMSE calculates the average difference between 
the original and estimated abundance map of the image. 
Therefore, the RMSE value gives the quality of unmixing 
algorithm and the reconstructed image. That means this 
matrix measures the spatial quality between the refer-
ence abundance Â and estimates abundance image A 
which is defined as:

 21ˆRMS ˆE( , ) F
h m

A A A A
nl

= -  (3)

where λh and nm are the number of bands and the 
pixels in each of the bands. A and Â represents the 
referenced and estimated abundance image. The ideal 
value of RMSE is equal to zero, and it can be achieved 
when Â = A, which indicates that there is no deviation. A 
smaller RMSE value indicates that better quality of the 
image.17

Peak signal-to-noise ratio (PSNR)
The PSNR value gives the quality of the spatial data in 
the reconstructed image in band-wise. In general, PSNR 
value is measured as the ratio between the signals to the 
residual errors. The PSNR of the lth band can be defined 
as:
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where PSNRl measures the spatial quality in the lth spec-
tral band is defined as:
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where Al is the pixel value of the lth abundance band in 
the image. The higher the PSNR value, the better the 
spatial quality of the estimated image.18

Universal image quality index (UIQI)
UIQI measures the similarity between the original and 
the estimated images. This is done by calculating the 
average correlation between both images. If Yi denotes 
the original image at the ith band and iY  denotes the esti-
mated image at the corresponding band, then the corre-
lation between Y(1) and ( )ˆ lY  is calculated as:
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where µA1 and µ ˆ lAm  denote the mean vectors, σA1 and 
ˆ lAs  denote the variances and ˆl lA As  is the covariance of 

both images, respectively. The UIQI measure the average 
correlation Q over all the bands as follows,

 ( ) ( )
1

1U IQI ,   ,ˆ ˆ
h

l l l l

h
A A Q A A

l

l
= å  (7)

The UIQI values range from [−1, 1]. When both images 
are similar, A = Â, then the val of [UIQI+] = 1. For the final 
result, computed the overall UIQI of the estimated HSI by 
averaging the UIQI value of all bands.16

Proposed model design
In this proposed model, we explore the spatial and 
spectral quality of hyperspectral images by considering 
the sparsity and smoothness constraints in the spatial 
domain as well as the MV constraint to the simplex 
formed from the endmembers of the spectral domain. 
These constraints help us to attain a narrow solution 
space to the NMF problem. The L1/2 regularisation, which 
shows superiority while considering the zero values 
when compared to other L-norms. Therefore, we incor-
porate the L1/2-norm regularisation to enforce sparsity 
of abundance and total variation regularisation (TVR) to 
preserve the spatial smoothness of the model. The robust 
non-negative matrix factorisation (r-NMF) algorithm18 is 
applied to describe the outlier residual term that captures 
the non-linear effects in the image. In this paper, the 
NMF-based unmixing algorithm uses the multiplicative 
update algorithm to update the basic terms and use 
β-divergence which minimises the objective function of 
NMF at each iteration until it reaches the pre-determined 
ε (epsilon) value.7

Linear mixing model (LMM)
Hongwei Han et al.1 proposed a conventional LMM for 
HU. This LMM only assumes the macroscopic level of 
information about the pixel in the image. The LMM model 
considers only the reflecting endmembers present within 
a pixel. Therefore, LMM first estimates the endmember 
based on the scene of interest, then decomposes the 
input matrix into pure spectral signature and their 
fractional abundance corresponding to the estimated 
endmember.19 LMM-based unmixing is shown in Figure 
1.

Let the observed hyperspectral image be Y = [y1,..., yk, 
..., yN ] ∈ RL × N with L bands and N pixels, then assume that 
p is the number of endmembers to be estimated. The 
endmember matrix is represented as E = [e1,..., eP] ∈ RL × N 
and its corresponding abundance matrix is represented 
as A = [a1,..., ak,..., aN] ∈ Rp × N. The matrix R = [r1,..., rk,..., 
rN] ∈  RL  × N is the corresponding residual matrix that 
commonly assumed as some noise and other residual 
errors. Generally, in most existing literature this term R is 
considered as zero or close to zero.

With these notations, the LMM can be modelled based 
on pixel-wise yk ∈ RL × 1, as:

 yk = Eak + rk, (8)

The matrices representation of Figure 1 can be 
presented as:

 Y = EA + R (9)

The LMM-based unmixing approaches are generally 
divided into geometrical and statistical. The geometri-
cal-based unmixing approach includes two steps, first, 
extract the endmembers (spectral signature) and then 
estimate the abundances for the extracted endmembers. 
The common methods used for endmember extraction 
are pixel purity index (PPI), NFINDR, vertex component  

Figure 1 
 

      
                                         Figure 1: Linear spectral unmixing of ground truth image. 

 
 
Figure 3 
 

          
                           Figure. 3. Representation of sparsity and smoothness constraints of the abundance matrix 

 
 
Figure 4 

                                           
 
 

Figure 1. Linear SU of ground truth image.
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subject to, E,A ≥ 0 (11)

where E and A are endmember and abundance with 
non-negative values and 

2
F

×  represents the Frobenius 
norm to minimise the error during the unmixing process.23

Sun et al.24 stated that NMF is a powerful tool for iden-
tifying the materials present in hyperspectral images. 
Therefore, they concluded that NMF-based unmixing 
methods are consistent with the LMM. However, some 
minimum solutions exist in the solution space of NMF 
due to the non-convexity. So, adding constraints into an 
NMF model reduces the non-convexity problem, thereby 
obtaining an optimal solution to problems.24

NMF with outlier term
In general, the LMM method does not consider specific 
or localised areas of the image such as edges or bound-
aries of the heterogeneous regions. This property implies 
that LMM assumes only a limited number of pixels. Due 
to this limited number of pixels, the unmixing algorithms 
based on LMM find challenges to estimate endmem-
bers and their abundance fractions accurately. From this 
premise, in a paper,7 a new NMF-based LMM model was 
proposed, called r-NMF, for extracting endmember and 
abundance matrix by considering the localised portions 
of hyperspectral images. This r-NMF model decomposes 
the input matrix Y as follows,

 Y ≈ EA + R (12)

where Y ∈ RL × N is an input matrix, E, and A represents the 
endmember and the abundance matrix. R is an outlier 
term that accounts for the non-linearity effects such as 
residual noise, spectral and spatial variability. The approxi-
mation symbol (≈) in Equation (12) indicates the minimum 
dissimilarity measure between the input and factorised 
matrix. So, Equation (12) can be reformulated as:

 D(Y | EA + R) (13)

which is equal to

 D(Y | EA + R) = [Z2] (14)

then Equation (14) can be rewritten as

minf (E,A,R) = D(Y | EA + R)

 subjected to, E,A,R ≥ 0. (15)

NMF with MV constraints
A significant geometrical constraint considered during 
the HU process is convex or simplex MV. This MV 
regulariser measures the simplex or convex hull 

analysis (VCA), simplex growing algorithm (SGA) and 
automated target generation process (ATGP). After the 
endmember extraction, abundances must be estimated 
for extracted endmember by using the partially or fully 
constrained least square method. These algorithms indi-
cate that in the geometrical approach, the abundance 
estimation strongly depends on the performance of the 
endmember extraction.20

In a statistical-based unmixing algorithm, both 
endmembers and their abundances are estimated 
simultaneously without any purest pixel assumption. 
Independent component analysis (ICA) and NMF are 
typical statistical-based unmixing algorithms. ICA is a 
blind source unmixing method that does not satisfy 
the sum-to one constraint (ASC) mandatory for LMM. 
In contrast, NMF factorises the high-dimensional data 
into two non- negative matrices simultaneously without 
pure pixel assumption by satisfying both ASC and ANC. 
Moreover, the non-negativity (ANC) constraints must 
satisfy in NMF by default. Therefore, HU can be formu-
lated well in NMF-based statistical approaches.21

Non-negative matrix factorisation (NMF)
NMF factorises a non-negative input matrix Y into two 
non-negative matrices namely endmember matrix E and 
abundance matrix A. In the initialisation step, set the 
number of endmember p for the input matrix Y ∈ RL × N 
and then calculate the initial endmember matrix E ∈ RL × p 
by ATGP which is the most advanced endmember 
extraction method with purest pixel assumption. After 
the endmember estimation step, fractional abundance 
A ∈ Rp × N corresponding to these endmembers is calcu-
lated. Finally, these initial abundances are estimated 
using the fully constrained least square (FCLS) method 
that satisfies both sum-to-one and non-negativity 
constraints.22

In general, the NMF method can be formulated as 
follows:

 Y ≈ EA (10)

Equation (10) implies that the input matrix Y is decom-
posed into two non-negative matrices endmember E and 
abundance A simultaneously.

NMF-based unmixing minimises the difference 
between Y and EA by performing the matrix decomposi-
tion iteratively until it meets the convergence condition. 
A squared Frobenius norm or Euclidean distance-based 
cost function is commonly used to measure the minimum 
distance in a HU problem. Then, the minimum distance of 
Equation (10) can be written as follows:
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volume whose vertices are the endmembers selected 
for unmixing. This work proposes a centroid-based 
MV simplex. This method shrinks the volume of the 
simplex or convex hull by pulling the endmember 
(vertex of simplex) towards the centroid µ (centre of 
simplex).25

The NMF method with minimum volume-based 
constraints for Equation (15) can be represented as,

 minf (E,A,R) = D(Y | EA + R) + αΦMV(E) (16)

 ( ) 2
MV 2

1

E   µ
p

i
i

e
=

Æ = -å  (17)

e centroid µ (centre of mass) of a simplex is estimated as 
follows:

 
1

1  
p

i
i

µ e
p

=

= å  (18)

where p denotes the number of endmembers and the ei 
represents the mean value of each row in the endmember 
matrix E.

The MV-based NMF algorithm provides high-fidelity 
to the spectral signatures and thus helps to reduce the 
computational complexity in practical applications. Figure 
2 shows the iterative process to represent the simplex 
with MV. In the k + 1th iterative step, it selects a MV 
simplex for the hyperspectral image Yh.

NMF with sparsity constraints
The NMF method is non-convex in nature, so it is not 
easy to attain a globally optimal solution. Therefore, 
various constraints (or priors) are embedded into E and 
A to achieve the convexity on NMF. These constraints 
help to reduce the solution space and obtain a finite 
solution to the NMF algorithm.2 A common constraint 
that is incorporated with the abundance matrix (A) is its 
sparsity. The abundance sparsity is an essential factor in 
hyperspectral image processing because the endmember 
distribution in each pixel does not fill in the whole scene 
of abundance map.17 That means, each mixed pixel in an 
hyperspectral image contains only a few endmembers to 
represent the abundance matrix and many values should 
be zero or sparse, as shown in Figure 3.

While imposing the sparsity constraint on A, Equation 
(15) can be named as the sparse-NMF, which takes the 
following form:

 minf (E,A,R) = D(Y | EA + R) + αΦMV(E) + βΦspa(A) (19)

 Φspa(A) = A1 (20)

where α∙ is a regularisation term that controls the sparsity 
measure function Φ(∙) of the abundance matrix A.

NMF with L1/2 regulariser
L-Norm regularisation methods are usually used to 
provide an optimal solution to the objective function. 

Figure 2. An iterative representation of MV simplex.
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Many forms of regularisers are available to encourage 
the solution of the objective function. For example, the 
L0 regulariser considers the zero or null elements in an 
abundance matrix and imposes the sparsest in the given 
cost function. However, the L0 regulariser provides a 
non-deterministic polynomial-time hardness (NP-hard) 
optimisation solution. So, it is not easy to solve and take 
a final decision in real life. The L1 regulariser is one of 
the most commonly used norms for considering the 
sparsity of the abundance matrix. Another popular L2 
regulariser generates smoothness but does not provide 
sparse results. Therefore, the L1 regulariser is the effec-
tive method for obtaining sparse results, but it considers 
only a small sample size from high-dimensional data, 
and, therefore, only a subset of spectral signatures can 
be processed at a time. Due to these reasons, fractional 
regularisers Lq (0 < q < 1) have been proposed and evalu-
ated in the literature.26

Qian et al.2 added L1/2 regularisation to the NMF method 
named L1/2-NMF. So, this method provides sparse-based 
unmixing and yields a more accurate estimation of abun-
dance. Therefore, the L1/2-NMF method is more effective 
for achieving better sparsity on the abundance matrix. 
Further, this L1/2 regulariser also yields a more secure 
solution than the L0 regulariser. From Equation (19), the 
L1/2-NMF with sparsity regularisation model for unmixing 
can be formulated as:

 minf (E,A,R) = D(Y | EA + R) + αΦMV(E) + βΦspa(A) (21)

 where Φspa(A) = A1/2 (22)

Then Equation (22) is substituted in Equation (19) as 
follows,

 minf (E,A,R) = D(Y | EA + R) + αΦMV(E) + A1/2 
 subjected to E ≥ 0, A ≥ 0 (23)

where

 
, 

1/2
1/2 ,

, 1

 
p N

i j
i j

A a
=

=å  (24)

and aij is the abundance value of the ith endmember at the 
jth pixel in the image.

Thus L1/2-NMF with sparse constraint algorithm has 
better performance on HU. However, the L1/2-NMF 
is less stable and highly sensitive to noise during the 
unmixing process, like other sparse-based NMFs. But we 
can improve the stability of this sparse constraint NMF 
algorithm by considering the structure information of the 
image. The structural similarity can be calculated with 
β-divergence as explained below.26

Total variation (TV) regulariser
The TV regulariser is another popular constraint that 
provides piecewise smoothness to the image by 
preserving the edge information. Furthermore, the use 
of the TV regularisation term also provides the ability to 
recover the image discontinuities. Therefore, this param-
eter plays a critical role in the image denoising process.27

In a hyperspectral image, each endmember pixel 
consists of a corresponding fractional abundance 
value represented in band-by-band form, as shown 
in Figure 4. These fractional abundance values of the 
same endmember correlate with each other to form the 
neighbouring pixels. This type of correlation among the 
neighbouring pixels provides smoothness to the image, 
because the neighbouring pixels in the abundance map 
of the same endmember should be almost similar. But 
sometimes, a sudden change may occur between adja-
cent pixel values. This sudden change mainly happens 
at the object boundary or the edges of the surface. 
Therefore, a TV regularisation constraint is added to our 
objective function to control such a sharp change and 
provide a piecewise smoothness on the abundance by 
preserving the spatial edge information. By considering 
this prior information in the hyperspectral images, we can 
effectively improve the accuracy of unmixing process.10

In general, the TV of abundance vector A can be 
expressed as,
 ( )minTV

A
A  (25)

 
Figure 1 
 

      
                                         Figure 1: Linear spectral unmixing of ground truth image. 

 
 
Figure 3 
 

          
                           Figure. 3. Representation of sparsity and smoothness constraints of the abundance matrix 

 
 
Figure 4 

                                           
 
 

Figure 3. Representation of sparsity and smoothness constraints of the abundance matrix.
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where

 
1 1TV( ) h v= +A H A H A   (26)

Let i and j be the collection of adjacent pixels in the hori-
zontal and vertical direction of the hyperspectral image, 
and then the TV function can be calculated as the differ-
ences between the adjacent pixels in abundance map A 
in both horizontal and vertical directions. This difference 
can be computed as follows:

 ( )h 1  ij i jx x -= -H A  (27)

 ( )v 1  ij i jx x -= -H A  (28)

By incorporating TV regularisation into Equation (23), 
the objective function of our proposed model becomes:

minf (E,A,R) = D(Y | EA + R) + αΦMV(E) + βΦspa(A) + λΦTV(A)

subjected to E,A,R ≥ 0  (29)

Hence, the convex unmixing optimisation solution was 
obtained by imposing MV, sparsity, smoothness priors 
and non-linearity effects.

β-Divergence
The β-divergence is used to determine the performance 
degradation of an algorithm. This is done by measuring 
the difference between the referenced and estimated 
image. This function uses a single parameter β that takes 
values like 2, 1, 0.
β = 2: squared Euclidean distance (SED)
β = 1: Kullback–Leibler divergence (KLD)
β = 0: Itakura–Saito divergence (ISD)

The primary motivation for finding the β-divergence 
is to develop highly robust algorithms. Therefore, this 
algorithm is used for clustering, feature extraction, classi-
fication and blind source separation.28

The SED and KLD are the most commonly used in 
NMF to measure the dissimilarity between the original 
and estimated image. On the other hand, SED is the 
more popular in HU to measure the range of similarities 
between two images.28

In general, the SED between any two points (x, y) in an 
n-dimensional space is measured by

 ( ) ( )
1

1|   
2

N

Euc
i

x y x y b
b

=

= -å  (30)

Here, β = 2 in SED and the value of this β-divergence 
is always greater than or equal to zero. The value is zero 
for identical or similar points and gives high values as 
the dissimilarities between two points increase. The 
β-divergence between the original and estimated image, 
Y and Y , are measured at each iteration using Equation 
(30). If this measurement is zero or close to zero, it indi-
cates higher similarity between both images.

Algorithm implementation
In this paper, we implemented an algorithm for hyper-
spectral image unmixing using the image’s non-linearity 
effects by accounting for spatial and spectral quality of 
the hyperspectral image by imposing certain extrinsic and 
intrinsic constraints into the image using the L1/2-norm. 
By incorporating all these extrinsic and intrinsic priors or 
constraints, our proposed model can be represented by 
the following objective function:

minf (E,A,R) = D(Y | EA + R) + αΦMV(E) + βΦspa(A) + λΦTV(A)

 subjected to E,A,R ≥ 0 (31)

The matrix R is an outlier function that accounts the 
non-linear effects such as residual noise and other anom-
alies due to spatial and spectral variability. The parame-
ters α, β and λ are the controlling terms; α controls the 
simplex with MV, β measures the sparsity elements of 
the abundance and λ controls the TV regularisation to 
maintain the spatial smoothness of the image. Including 
the parameters explained above in Equation (31), the 
proposed method attains an optimum minimisation solu-
tion to the unmixing problem with high robustness to the 
signal-to-noise ratio. In each of the optimisation steps, 
both E, A and R are alternately updated till the cost func-
tion reaches convergence. Many works in the literature 
have already proposed such algorithms to update and 
solve the NMF. Among them, multiplicative update (MU) 

 
Figure 1 
 

      
                                         Figure 1: Linear spectral unmixing of ground truth image. 

 
 
Figure 3 
 

          
                           Figure. 3. Representation of sparsity and smoothness constraints of the abundance matrix 

 
 
Figure 4 

                                           
 
 

Figure 4. The smoothness of the mixed pixel in 
hyperspectral image.
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algorithms29 are commonly used for the solution of NMF. 
Many variants of the NMF method make it easy for imple-
mentation and produces good approximation results.30

Following the MU rule for NMF proposed by Lee and 
Seung,30 they derive update rules for E and A as follows:

 ( )
 1 (( ) )

( )

t T
ijt t

ij ij t T t t
ij

a y
e e

a a e
+
é ù é ùë û ë û

é ùë û

¬  (32)

 
( )

1
 1

1 1

( ( ) )

( )

t T
ijt t

ij ij t t t T
ij

y a
a a

a e e

+
é ù+ ë û

é ù é ù + +ë û ë û
é ùë û

¬  (33)

 1

 
ijt t

ij ij t t

y
r r

a e
+

é ù é ùë û ë û
¬  (34)

where y[ij], e[ij], a[ij] and r[ij] represent the input image, 
endmember, abundance and outlier matrix at the i,jth pixels. 
The current and previous iteration steps are denoted as 
t + 1 and t, respectively. Thus, the matrix representation 
of the above update rule can be as follows:

 
T

T ¬ °
YAE E

EAA
 (35)

 
T

T ¬ °
E YA A

E EA
 (36)

  ¬ °
YR R

EA
 (37)

The endmember matrix E, abundance matrix A and 
outlier matrix R are updated iteratively with this MU rule 
until it reaches the convergence condition. Here, the T 
indicates the transpose of the matrix. The convergence 
condition is measured as the change in the ratio of cost 
function f must be below the given threshold ε,

 
1f  f  

f

t t

t e
+-

<  (38)

where t is an iteration index, we can set a maximum 
number of iterations as a stopping criterion for practical 
implementation. If the convergence condition comes 
within that maximum number, the algorithm reaches the 
minimum optimisation condition, otherwise the algo-
rithm’s execution continues until it reaches the prede-
fined number of iterations and take it as the stopping 
criteria.

This algorithm updates each term (E, A, R) condition-
ally using the MU rule. The updated term is fixed during 
the updating process, and all other parameters use the 
current value obtained at the previous update. Thus, the 
updating process continuously iterated until the objec-
tive function decreased or reached the stopping criteria.

Update of the endmember
The MU rules are commonly used in the NMF method for 
endmember estimation and is represented in Equation 
(19) as:

 
T

T o¬
YAE E

EAA
 (39)

In our method, we use multiplicative gradient 
descent,31 one of the popular approaches for NMF with 
β-divergence. At first, follow the multiplicative gradient 
descent approach for local convergence and then follow 
the iterative block coordinate approach for global conver-
gence of endmember estimation.

Update of the abundances
In general, the MU rule for abundance estimation is 
represented in Equation (22) as follows:

 
T

T
E YA A o

E EA
¬  (40)

Updating A  is somewhat diff iculty and t ime 
consuming compared to the updating process of 
E and R. While updating the abundance, it needs 
to satisfy both sum-to-one and non-negativity 
constraints. These constraints help to reduce image 
blurring and poor contrast due to the inadequate 
falling of light during the image acquisition stage. To 
attain a sum-to-one constraint on the abundances 
map, it must normalise the abundance vector to unity. 
Normalisation is a process that changes the range of 
pixel intensity values between 0 and 1. Therefore, 
the normalisation process ensures that each pixel in 
the image has the same range of data distribution. 
This re-scaling technique makes the image processing 
much faster and stable. In general, matrix normal-
isation is done by simply dividing each element in 
the matrix by its magnitude. For this approach, the 
abundance matrix A is replaced with a new variable U 
which is a non-negative abundance vector with p × N 
elements, and then set

  pn
pn

pn

u
a

u
=  (41)
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The objective function of Equation (31) is then changed 
into the new optimisation problem w.r.t Equation (41) as

 ( ) lnminf ( | )lp pny e u=
U

U D   (42)

i.e., ( ) 1

11 1
minf ( |  , , )n

n

u u
u u

é ù
ê ú= ¼¼¼ê ú
ë ûU

U D Y E

subjected to U ≥ 0  (43)

where yln is a vector having l values, and n is the number 
of vectors in the image matrix YL x N. This vector is decom-
posed into two other vectors with p number of endmem-
bers named as endmember vector elp and abundance 
vector upn. Thus, Equation (43) ensures the sum-to-one 

constraint to the fractional abundance. After that we 
have to ensure the non-negativity constraint. For that, 
we use the multiplicative gradient descent approach. The 
multiplicative gradient descent approach states that, it is 
equivalent to updating each parameter by multiplying its 
value at the previous iteration by the ratio of the negative 
and positive parts of the gradient of the cost function 
about that parameter.20 Suppose there is a function f(θ) 
which should be minimised over θ. Then gradient descent 
using the multiplicative algorithm is equivalent to,

 ( )
( )

 
 q

q

q
q q

q

-

+

Ñ
¬

Ñ

D

D
  (44)

where θ and q represents an updating parameter at 
the current and previous iteration of a cost function. 
This parameter θ is defined as difference between two 
non-negative functions, ÑθD(θ) = Ñθ

+D(θ) – Ñθ
–D(θ). We 

put all the negative terms in the numerator ∇θ
–D(θ) and all 

the favourable terms in the denominator ∇θ
+D(θ).

Then simply rewrite Equation (44) w.r.t. U as
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 (45)

where upn represents the value of the previous iterations 
of the algorithm. Equation (45) ensures non-negativity of 
the updated term, and thus our algorithm ensures both 
sum-to-one and non-negativity constraints. Based on the 
gradient descent criterion.28 The above two non-negative 
functions ( )f

pnu
+Ñ U  and ( )f

pnu
-Ñ U  can be calculated as the 

first and second derivative of w.r.t. u, such that

 ( )f  
pnu lp l

l

e y-Ñ =åU  (46)

 
 ( ) 

l

f  
pnu lp le y+Ñ =åU  (47)

Substitute (46) and (47) in Equation (45)
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Denoting 

ln ln   ( )lp pn
l l

y s e u= =å å   .

Thus, to ensure both sum-to-one and non-negativity 
constraints, the MU rule for abundance estimation in 
Equation (22) can be modified as follows

 


T

T
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+
¬

+
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E Y S Y



 

 (49)

where Y =EA . Experimenting on our algorithm shows 
that the value of this objective function decreases at 
each iteration and thus makes the convergence faster.7 
Then the normalised representation of abundance coeffi-
cient according to Equation (41) can be written as:

   ¬
AA
A

 (50)

In mathematics, A represents the magnitude or trace 
of the matrix, which determines matrix characteristics. 
This magnitude is calculated by summing the diagonal 
element of a given matrix. Therefore, the abundance esti-
mation equation can be represented as follows:

 1
11 1   diag , .,  pa a

-é ù¬ ¼¼¼ê úë ûA A  (51)

Update the outlier term R
Updating R, the data-fitting outlier term, by the current 
values of E and A. Then, the minimisation problem can be 
represented as

 
( ) ( )minf |

s. t. 0

= +

³
R

R D Y EA R

R
 (52)

The data-fitting term R is also updated in the same way 
as we did in the endmember update step by using the 
MU rule and normalising the outlier data to reduce the 
reconstruction error. That returns an auxiliary function 
that optimises and leading to the following updates,
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The matrix implementation of Equation (53) above can 
be written as

 1
11 11

  . 
    diag , ,r rl

-

é ù
ê ú

¬ ê ú
ê úé ù+ ¼¼ê úë ûë û

YR R
Y R

 (54)

As it turns out, the terms endmember, abundance and 
outlier are implemented in matrix form and updated by 
Equations (19), (51) and (54). Equations (17), (24) and 
(26) calculate the simplex volume of the endmember, 
whereas Equations (24) and (26) calculate the sparsity 
and smoothness of the abundance matrix. The below 
algorithm, named the JEIp L1/2-NMF algorithm, explains 
the overall procedure of our proposed model.

Results and discussion
The proposed JEIp L1/2-NMF algorithm for hyperspectral 
image unmixing is implemented on four different public 
datasets explained above. Endmember extraction algo-
rithm ATGP and inversion algorithm FCLS are used to 
extract the endmember and the abundance map of the 
images in the dataset. Figures 5 and 6 show the images of 
four datasets and their extracted endmembers. Similarly, 
Figures 7–10 depict the estimated abundance map of the 
four datasets.

Parameter analysis
There are three parameters (α, β and λ) used in our algo-
rithm, in which α measures the MV of simplex, β measures 
the sparsity of the abundance matrix and λ provides a 
piecewise smoothness to the image. The parameter β 
gives the sparsity levels of the abundance data.

 1 2  /   1â   
1

l l

l

N A A
L N

-
=

-å  (55)

where the abundance value Al denotes the hyperspectral 
image at band l with L bands and N pixels.11

Experiment analysis
We conducted out experiments and evaluated the effects 
of three parameters α, β and λ on our JEIp L1/2-NMF algo-
rithm using the four different datasets. For parameter 
β, we used the value as {1e-5, 1e-4, 1e-3, 1e-2, 0.01, 
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} calculated from 
Equation (55). According to the comparative analysis 
of the existing literature study, the performance of the 
other two parameters α and λ are also computed for the 
same set of values of β.9

Result analysis
The results obtained on our proposed method with three 
different parameters α, β and λ are observed. We tested 
various combinations for β and λ parameters in the given 

JEIp L1/2-NMF algorithm
# Y and Y  represent the input and output images.
# E is the endmember matrix, A the abundance matrix, 
R the outlier terms and ϵ is the threshold value.
# MV is the minimum volume, spa represents the spar-
sity and TV the total variance constraints.
Input: an observed HSI data Y ϵ RL × N.
 p is the number of endmembers.
Initialise:
E = ATGP(Y), A = FCLS(E) and R = (Y – EA).
S = EA
Repeat:
Step 1:
 Estimate:

( ) 2
MV 2
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E   µ
p

i
i

ef
=

= -å

1/2 1 1( )TV TV h vA H A H Af f× = + 
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( )  aspa Af
=

=å
Y = S + R + φMV(E) + ψspa(A)1/2 + ψTV(A)1/2

Step 2: Update E as 
T

T
YAE E o

EAA
¬

 Y  = S + R + φMV(E) + ϕspa(A)1/2 + ϕTV(A)1/2

Step 3: Update A as 
1

11 1   diag , .,  pa a
-é ù¬ ¼¼¼ê úë ûA A .

 Y  = S + R +φMV(E) + ϕspa(A)1/2 + ϕTV(A)1/2

Step 4: Update R as

1
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 Y  = S + R +φMV(E) + ϕspa(A)1/2 + ϕTV(A)1/2

Step 5: Estimate β-divergence at each iteration as

( ) ( )2
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N
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Until reaches the maximum number of iterations or
2
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e- <Y Y

Output: E and A.



14 Hyperspectral Image Non-Linear Unmixing using Joint Extrinsic and Intrinsic Priors with L1/2-Norms to NMF
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 Figure 6: The estimated endmembers of the four dataset (a) Washington DC Mall (b) NEON (c) Pavia University (d) Indian Pines. 

 
 
 
 
 
 
 
 

Figure 5. The ground truth image of the four datasets (a) Washington DC Mall, (b) NEON, (c) Pavia 
 University and (d) Indian Pines.
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Figure 6. The estimated endmembers of the four datasets. (a) Washington DC Mall, (b) NEON, (c) Pavia 
University and (d) Indian Pines.

Figure 7 
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             Figure 7: Estimated abundance map of Washington DC dataset in our method (a) roof, (b) street, (c) grass, and (d) tree 
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range of values in four selected datasets. It shows that as 
and when the value of β and λ exceeds 0.0015, the value 
of SAM and RMSE increases rapidly. Similarly, when the 
values of parameters β and λ are below 0.0001, the RMSE 
value also starts rising. Therefore, the performance metrics 
provide better values between 0.0015 and 0.0001. Other 
performance measures such as SRE, PSNR and UIQI also 
show higher values in these ranges in all our four datasets. 
So, we set both β and λ = 0.00001 (1e-4) to achieve better 
performance. At the same time, the value of α at 1e-5 
to 1e-3, both SAM and RMSE gives excellent and stable 
results. However, for all other values of α, both metrics 
show a rising tendency whether larger or smaller. Further, 

other performance measures for the same range of values 
also shows better results in our four datasets. Therefore, 
the optimal value of α should be in [1e-5, 1e-3]. Based 
on this analysis, we set all three parameters α, β and λ are 
1e-4 in the rest of our experiments.

To evaluate the effectiveness of our algorithm, we also 
conducted experiments on our four hyperspectral datasets 
with the baseline unmixing methods and compared the 
results with the proposed method. We compared our HU 
methods with baseline unmixing methods includes original 
NMF, sparsity-based methods robust-NMF,7 ICoNMF-TV,8 
Sparse-NMF9 and MPEC-NMF.11 Then, the performance 
of all these methods on our datasets is evaluated and 
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corresponding results obtained are shown in Table 1. Table 
1 gives a comparative analysis of our proposed method 
with the various baseline methods using different quality 
measures. From this table, it is evident that the proposed 
JEIp L1/2-NMF algorithm for hyperspectral image unmixing 
gives better performance in all the quality measures, such 
as SAM, RMSE, SRE, PSNR and UIQI, compared to the 
baseline unmixing approaches.

Dataset performance and discussion
The performance evaluation of our JEIp L1/2-NMF algo-
rithm for hyperspectral image unmixing is carried out on 
four different datasets by varying the number of endmem-
bers. This comparison helps us to enhance the quality 
of our proposed algorithm. Initially, we compared the 
values of SAM and RMSE because it helps measure the 
quality of spectral and spatial data. The SAM and RMSE 
values on our JEIp L1/2-NMF algorithm are represented in 
Figures 11 (a) and (b). This result shows that SAM gives 
a better value as the number of endmembers increases. 
That means by increasing the number of endmembers 
the quality of the estimated spectral data becomes good. 
On the other hand, the RMSE value gives smaller values 

as the number of endmembers rises to some extent up 
to five, after that, its value becomes higher. This indicates 
that increasing the number of endmembers up to five, 
our method gives high-quality spatial data. However, as it 
increases above five, the quality of the spatial data falls.

We also measured the value of SRE and PSNR for all 
our datasets in experiment by varying the number of 
endmembers, as shown in Figures 10(c) and (d). The PSNR 
shows better results on all the datasets with increasing 
number of endmembers whereas the SRE shows the 
worst value for the cases. To obtain both high-quality 
spectral and spatial data from the hyperspectral image, 
we compared the values of all four quality measures such 
as SAM, RMSE, PSNR and SRE. Finally, we concluded 
that unmixing the spectral image with endmembers less 
than five helps attain the best and good quality spectral 
and spatial data simultaneously without any distortion.

Conclusion
In this paper, we presented a non-negative matrix factori-
sation (NMF) based unmixing algorithm by adding some 

Dataset Method NMF r-NMF ICoNMF-TV
Sparse-

NMF MPEC-NMF Proposed

Washington 
DC Mall

SAM 1.31 1.30 1.75 1.17 1.14 1.04
RMSE 1.62 1.24 2.06 1.47 1.40 1.21
SRE 17.73 18.51 16.46 17.8 17.65 18.85
PSNR 117.92 118.01 113.72 116.01 117.01 118.32
UIQI 0.04 0.06 0.03 0.08 0.08 0.12

NEON

SAM 1.40 1.39 0.49 0.48 0.48 0.47
RMSE 1.65 1.70 1.65 1.73 1.72 1.35
SRE 18.35 18.23 18.32 17.88 17.81 18.99
PSNR 115.66 115.38 115.68 115.23 115.23 117.27
UIQI 0.030 0.026 0.012 0.021 0.026 0.038

Pavia 
University

SAM 0.021 0.029 0.021 0.019 0.017 0.011
RMSE 3.93 6.12 4.71 3.92 4.31 3.77
SRE 16.2 14.7 15.9 14.3 16.1 16.4
PSNR 106.12 104.16 105.14 107.86 107.46 108.46
UIQI –0.12 –0.15 –0.13 –0.12 –0.18 –0.11

Indian Pines

SAM 0.31 0.33 0.30 0.29 0.29 0.28
RMSE 1.10 1.09 1.15 1.68 1.67 1.06
SRE 19.61 19.80 19.63 21.01 20.89 21.21
PSNR 119.11 119.27 121.13 120.28 120.78 121.77
UIQI 0.05 0.06 0.03 0.03 0.05 0.07

Table 1. Performance measures of the HU algorithm used on different datasets with various quality measures.
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constraint parameters to enhance the quality of the 
images in spectral and spatial dimensions. This model is 
an extension of the standard linear mixing model (LMM) 
for considering the non-linear effects in the image by 
including an outlier residual term. These non-linear 
effects are treated as additive noise, sparse data or 
some spatial variations. This proposed hyperspectral 
image unmixing using the joint extrinsic and intrinsic 
priors with L1/2-norms to non-negative matrix factorisa-
tion (JEIp L1/2-NMF) algorithm updates each parameter 
by using a popular update method, called the MU rule 
which updates the endmember signatures, abundances 
and the outlier matrix iteratively until it reaches conver-
gence. Initially, a TV regulariser term is added to the 
proposed algorithm to denoise the abundance maps, 
giving a smooth texture to the image. Then, the sparse 
regulariser term is included in the model that helps us to 
account for the zero values in the image. Therefore, spar-
sity is an effective tool for dimensionality reduction and 
that helps to use best endmember values of the pixels, 
thus the sparsity constraints increases the accuracy of 
the unmixing algorithm. Further, the abundance sparsity 
consideration is promoted by imposing the L1/2 regular-
iser to the model. The proposed model also considered 
the structural information of the image at each iteration 

by using the β-divergence method. β-divergence deter-
mines the structural similarity between data more accu-
rately during each decomposition of the hyperspectral 
image. This improves the decomposition performance 
and the estimated image is very consistent with the 
ground truth image. Finally, we used an epsilon value to 
prevent division by zero if the image has any zero-valued 
pixels. Epsilon stands for any arbitrary small number or 
pre-determined positive constants in image processing. 
This epsilon value is commonly used in certain conditions 
where the distance between the two elements can be 
made as small as any number that we wish to manage.

We experimented with our proposed unmixing method 
on four real-world datasets and analysed the perfor-
mance of both spatial and spectral data by using various 
quality measures such as SAM, SRE, RMSE, PSNR and 
UIQI. Then we compared the effectiveness of our JEIp 
L1/2-NMF algorithm with the baseline methods such as 
NMF, r-NMF, ICoNMF-TV, sparse-NMF and MPEC-NMF. 
From the results produced by all the above methods, 
the proposed algorithm gives better images with high-
quality spatial and spectral dimensions and consumes 
less computational processing time than all the other 
methods. This work mainly focused on exploring spatial 
and spectral information by considering non-linear effects 
in the hyperspectral image. We can further improve the 
accuracy of unmixing performance by introducing more 
constraints or priors to the endmembers and abundance 
parameters of hyperspectral images.
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Fig.101: The performance of our method on four datasets by varying the 
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