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Hyperspectral remote sensing is known to suffer from wavelength bands blocked by atmospheric gases. Short-wave infrared hyperspectral imag-

ing at in situ installations is shown to be affected by water vapour even if the pathlength of light through air is only hundreds of centimetres. This 

impact is especially noticeable with large variations of relative humidity, the coefficient of variation reaching 5 % in our test case. Using repeated 

calibrations of imaging system at the same relative humidity as in the measurement, we were able to reduce the coefficient of variation to 1 %. The 

measurement variations are also shown to induce significant error in material classification. Polymer type identification was selected as the test 

case for material classification. The measurement variations due to the change in relative humidity are shown to result in 20 % classification error 

at its minimum. With repeated calibrations or by eliminating the most affected wavelength bands from measurements, we were able to reduce the 

classification error to less than 1 %. Such improvement of measurement and classification precision may be important for industrial applications 

such as waste sorting, polymer classification etc.
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Introduction
Hyperspectral imaging is an optical contactless sensing 
method that can be used to acquire spectral signa-
tures of various materials at each pixel. Unique spectral 
signatures are the result of molecules having quantified 
energy levels of vibrations. When incident photons cause 
molecules to enter higher energy levels, absorption of 
light occurs.1 Most of these transitions happen in the 
mid-range infrared region (2.5–25 µm) of light but can be 

observed as overtones in the short-wave infrared (SWIR) 
region (0.9–2.5 µm).

Remote sensing is an important application area for 
hyperspectral imaging. Chemical composition of ground 
surfaces can be analysed and classified from their spec-
tral signatures using instrumentation onboard satellites or 
aircraft.2 Waste sorting and recycling is another example 
of industrial use of hyperspectral imaging for material 
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classification.3–5 Push-broom is a commonly used tech-
nique for hyperspectral cameras. This type of camera 
captures a line of pixels (scan line), while hundreds of 
spectral channels provide a dense sampling of the wave-
length spectrum at each pixel.6,7 Push-broom cameras are 
well suited for industrial use, where typically the motion 
from a conveyer belt provides the second spatial image 
dimension.5

There is at least one major difference in using hyper-
spectral imaging for remote sensing compared to indus-
trial applications. That is the availability of windows 
and blocked regions in the transmittance of the atmo-
sphere.2,8 Water vapour is one of the major reasons for 
the blocked wavelength regions that cannot be used 
for remote sensing. However, the relatively very short 
path length of light for industrial applications suggests 
to us that the whole SWIR region should be available for 
measurements. But two questions still remain: (1) How 
much will water vapour have an impact on the practical 
use of hyperspectral imaging for industrial applications? 
(2) How much can calibration procedures reduce the 
impact from water vapour? We intend to provide answers 
to those questions in this paper.

Radiometric calibration,9 calibration of true reflec-
tance10,11 or relative reflectance12 of hyperspectral 
cameras, or hyperspectral imaging systems are known 
computational methods used to suppress impact from 
variations in light intensity, pixel sensitivities and envi-
ronmental parameters. Despite the well-known impact of 
water vapour in the SWIR region of light,2,8 we could not 
find any published studies of the impact of water vapour 
on in situ hyperspectral imaging systems and material 
classification. The scientific contribution of this paper is 
an analysis of this impact.

Materials and methods
In this section we provide the brief details of hardware 
used in this research. The description of methods used 
to acquire and process the spectral data are also part of 
this section.

Hyperspectral camera
In this research, the FX17e hyperspectral camera from 
Specim was used, shown in Figure 1a. This camera 
captures 2D hyperspectral images in the SWIR region, 
with an exact range of 900–1700  nm. Each image 
contains information on 224 spectral bands with a full 
width half maximum (FWHM) of 8 nm. This camera uses 

Figure 1. Materials used in the research: (a) Specim 
FX17e hyperspectral camera, (b) Rallye 3003 compact 
halogen lamp, (c) PTFE tile, (d) DEM500 humidity sensor, 
(e) Beurer Gmbh’s LB 88 humidifier.

Figure 2. A general scheme for a push-broom 
camera.
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the push-broom6 method to acquire spectral information 
of the surface along the scan line, as depicted in Figure 
2. For each scanned line, the camera outputs a 2D image 
where each row represents the spectral reflection in one 
of the 224 spectral bands.

Calibration target
To measure the relative reflectance of the test samples, 
a 10 mm thick, 295 × 295 mm polytetrafluoroethylene 
(PTFE) tile manufactured by Amsler & Frey was used as 
the calibration target. This board is shown in Figure 1c. 
This PTFE tile is known to diffusely reflect light with as 
even a distribution as SpectralonTM over the range of all 
wavelengths in the SWIR region. It is also known to be 
insensitive to humidity, a property of particular interest 
when experimenting in humid environments.

Illumination source
For illumination of the test samples and calibration target, 
two halogen lamps, Rallye 3003 compact, manufactured 
by Hella13 were used. One of these lamps is shown in 
Figure 1b. The lamps were mounted on a tripod stand 
and connected to a general-purpose power outlet of 
220 V via an AC/DC converter.

Humidity/temperature sensor
To measure the relative humidity (RH) and air tempera-
ture during experiments, a DEM500 sensor manufac-
tured by Velleman14 was used. The sensor is able to 
sense RH from 0 % to 100 % with tolerance of ±3 %. It 
also measures temperature in the range of –20–70 °C 

with tolerance of ±1 °C. This sensor device is shown in 
Figure 1d.

Humidifier
A Beurer Gmbh LB 88 humidifier15 was deployed inside 
the lab to increase the RH to the desired values of 
80–85 %. But the RH level did not go higher than 60 % 
with the LB 88 alone. An electric stove was additionally 
used, to boil water inside the lab to reach RH levels above 
80 %. The LB 88 humidifier is shown in Figure 1e.

Experiment setup
Two experiments were conducted in this research. 
Experiment #1 was conducted to analyse the impact of 
RH change on the hyperspectral measurements of mate-
rials. It is also analysed how much the measurement error 
can be reduced by frequent calibrations of the imaging 
system. In Experiment #2 we analysed if the inaccuracies 
in the measurements induced by the change of RH have 
any impact on the classification of materials present in 
the scene. For the second experiment, polymer classifica-
tion was taken as the test application case.

Both experiments were conducted using the exper-
iment setup shown in Figure 3. The left side of Figure 
3 shows a schematic depiction of the camera and light 
source. Distance L from the stand to the analysed object 
is approximately 85 cm. Height of stand is also 85 cm, 
which makes the travelled pathlength of light in air 
2 ∙ √2 ∙ L = 240 cm. The right side of the same figure shows 
a front view photo of the experiment setup. Label A at 
the bottom indicates the position of a 3D printed test 

Figure 3. Left side: schematic drawing of camera and light source. Right side: 
front view photograph of experiment.
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object made of polylactic acid (PLA). Label B indicates a 
10 mm thick calibration object made of polytetrafluoro-
ethylene (PTFE).

A sensor for RH and temperature was positioned close 
to the stand at floor level, label C. This experiment setup 
was arranged to mimic the optical situation at a typical 
industrial site for, e.g., sorting of waste material. All 
equipment was positioned inside a 10 m2 office, including 
an ultrasonic humidifier and an electric stove for boiling 
water.

Sample preparation
For Experiment #1, a 3D printed test object made of PLA 
was placed on the right half of the camera line of scan. The 
calibration target was placed on the other half of the line 
of scan. All the spectral measurements for Experiment #1 
were made without moving the test object or calibration 
target. The test object and calibration target were placed 
together for every measurement to avoid the impact of 
any potential slight change in the environment.

For Experiment #2, different types of recyclable plastic 
were placed on the camera scan line. The calibration 
target was also included in the sample as shown in 
Figure 4.

These recyclable plastics are generally known by 
their recycling codes from 1 to 7. The first six types are 
included in this sample. Table 1 presents the details of 
the plastics used with their polymer names, recycling 
numbers and abbreviations.

Experimentation procedure
Experiment #1
The first experiment was started in a long-term stable 
climate inside the office room, 20 % RH and 22.4 °C. 
Two hyperspectral images were captured using the push-
broom camera such that the scan line covered both 
PLA and PTFE materials within the same capture. The 

humidifier was started to run at variable powers and 
times to reach higher RH. Hyperspectral images were 
captured for a series of increasing RH. It became neces-
sary to also boil water using an electric stove to attain RH 
levels higher than 60 %.

Experiment #2
For the second experiment, the spectral measurements 
of all three polymer samples were made individually at 
23 % RH and 83 % RH. The same experiment setup was 
used for both experiments.

Calibration model
The calibration model depicted in Figure 5 was used 
as a dataflow graph of spectral transformations.12 L(λ) 
corresponds to the spectral distribution of the light 
source, where λ is the wavelength of light. A(λ) is the 
wavelength-dependent absorption in air along a path-
length defined by the experiment setup. M(λ) is the 
wavelength-dependent reflection of light in the anal-
ysed surface and at the angle β defined by the experi-
ment setup. C(λ) is the spectral distribution of sensitivity 

Figure 4. One of the three polymer samples for Experiment 2.

Recycling 
number Abbreviation Polymer name

1 PETE or PET
Polyethylene 
terephthalate

2
HDPE or 
PE-HD

High-density 
polyethylene

3 PVC or V Polyvinyl chloride

4 LDPE or PE-LD
Low-density 
polyethylene

5 PP Polypropylene
6 PS Polystyrene

Table 1. Types of polymers used in test case 2 samples.
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for the hyperspectral camera being used. W(λ) is the 
wavelength-dependent reflection of light in the surface 
of the calibration object and at the angle β. The lower 
path of the dataflow graph shown in Figure 5, labelled 
as reference measurement “ref” corresponds to a cali-
bration at air absorption Ar(λ). The upper path is labelled 
as material measurement “m” and corresponds to the 
measurement of light reflected in an analysed material 
at air absorption Am(λ). As per Equation 1, the recorded 
spectral signatures of analysed materials are made inde-
pendent of light source, air absorption and camera sensi-
tivity by the computation of relative reflectance RR(λ) 
when Am(λ) = Ar(λ) = A(λ).

 ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )
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l l l l l
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l l l l l
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Hence, this is no absolute radiometric calibration since 
RR(λ) is still dependent on the calibration target. However, 
if the calibration object has a spectral distribution of 
reflected light W(λ) close to constant over the spectral 
range of measurements, this makes the relative reflec-
tance RR(λ) dependent only on the analysed material.

Data preparation
Experiment #1
For Experiment #1, six hyperspectral images of the first 
sample were captured at 20, 31, 42, 56, 78 and 89 % of 
RH, respectively. From each image, mean spectra of PLA 
test object and calibration target were calculated.

Experiment #2
For Experiment #2, three polymer samples were 
prepared. For each sample, two measurements were 
made at 23 and 83 % RH respectively. From these six 

measurements, three matrices of RR(λ) were calculated 
using Equation 1. First, the RRT(λ) matrix was computed 
using both M(λ) (polymers) and W(λ) measured at 23 % 
RH such that: Am(λ) = Ar(λ). Second, RRD(λ) was computed 
using Am(λ) at 83 % RH and Ar(λ) at 23 % RH. The third 
matrix RRH(λ) was computed using Am(λ) = Ar(λ) at 83 % 
RH. The matrix RRD(λ) represents a scenario when RH in 
material measurement has increased considerably with 
respect to the reference measurement at lower RH. The 
third matrix RRH(λ) represents a scenario when the refer-
ence and material measurements were made at the same 
higher RH (83 %). Table 2 presents the number of spectra 
per data class, from all three samples, for training and test 
datasets.

Principal component analysis
Principal component analysis (PCA) is a mathematical 
method to reduce the number of dimensions of large 
data sets. N axes called principal components are defined 
within a K-dimensional input data space such that a new 
orthonormal coordinate system is formed. The orienta-
tion of the principal components is defined by a 2-dimen-
ional matrix of variable loadings

{ }, | 1..  1..i jP i K j N= Î Ù ÎP .

An input data vector X


 is a set of K number of input scalar 
variables. Linear projection of X



 on the set of N principal 
components will result in an N-dimensional score vector S



,

 S


 = X


 ∙ P (2)

The graphical plotting of a set of vectors S


 is usually 
referred to as a “score plot”.16 The K-dimensional loading 
vector 

{ }, | 1..i i jP P j N= Î


Figure 5. Spectral calibration of measurement setup.
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explains how much an input variable indexed by i contrib-
utes to the N dimensions of a score vector S



. The graph-
ical plotting of a set of loading vectors iP



 is usually referred 
to as a “loading plot”. If a loading vector iP



 has large magni-
tude, it means that the input variable indexed by i has a 
significant impact on the PCA model, less magnitude 
means less impact.

 2
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The vector of loading magnitudes M


 can thus reveal 
information about which subset of input variables 
contribute the most to the PCA model. For applications 
using hyperspectral imaging, this vector of loading magni-
tudes can be used for wavelength band selection. Other 
researchers have previously used PCA and the loading 
coefficients for band selection.17,18

In this study, PCA was performed on RRT(λ) to create a 
matrix of variable loadings and a low-dimensional training 
dataset of score vectors. Test datasets of score vectors 
were computed from RRD(λ) and RRH(λ) using the same 

matrix of variable loadings. The centring and scaling of 
RRT(λ), RRD(λ) and RRH(λ) were conducted using mean and 
variance vectors of RRT(λ) as shown in Figure 6.

The matrix of variable loadings computed from RRT(λ) 
were used to transform the RRD(λ) and RRH(λ) into the 
same lower-dimensional space as with the training data. 
This was done to ensure that the test vectors had no 
impact on the training of the classifier.

Support vector machines
Support vector machines (SVMs) are supervised learning 
models with associated learning algorithms that are 
used for data classification and regression analysis. In 
this study, we trained a multiclass SVM classifier to 
analyse the impact of water vapour on the material 
classification for a selected test case. To implement the 
multiclass SVM, MATLAB multiclass error-correcting 
codes (ECOC)19 were used with radial base function 
(RBF) kernels. A previous study20 motivated us to use 
the combination of PCA for dimension reduction and 
SVM for classification to get better classification of 
hyperspectral data.

Class Number of spectra
RRT(λ) 

( training data)
RRD(λ) 

(Test data 1)
RRH(λ) 

(Test data 2)
PETE 183 183 183
HDPE 60 60 60
PVC 243 243 243
LDPE 333 333 333
PP 270 270 270
PS 138 138 138
Background 93 93 93

Table 2. Number of spectra per data class for training and test datasets.

Figure 6. Preprocessing steps of training and test data sets.
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reference measurement of the calibration target. The 
alignment of the curves seems visually close to perfect.

The alignment of curves can further be quantified as the 
coefficient of variation versus the wavelength as shown 
in Figure 10. Coefficient of variation is commonly used 
to evaluate the relative precision of any measurement. 
In this particular case, it is expected to ideally obtain the 
same spectral signature of PLA independently of RH. In 
the 1.38 µm region, there is a reduction from about 5 % 
to 1 % misalignment when using repeated calibrations at 
each RH.

Figure 11 shows the mean relative reflectance of PTFE 
versus RH and for three spectral bands. Calibration was 
done at 20 % RH. The higher sensitivity to RH for the spec-
tral bands close to 1.1 µm and 1.38 µm is clearly visible.

Result and analysis
Figure 7 shows the measurements of relative reflectance 
RR(λ) for the calibration target repeated for various RH. 
Hence, the material M(λ) is the same as the calibration 
target W(λ) and ideally RR(λ) = 1. The computation of 
RR(λ) in this figure is done with a calibration measure-
ment at 20 % RH. As expected, we see an almost perfect 
straight line such that RR(λ) = 1 at 20 % RH. But for 
the other levels of RH, we see increased absorption of 
light in two spectral regions: approximately 1.1 µm and 
1.38 µm, as also reported as blocked wavelength bands 
by the remote sensing community.2,8 To understand why 
Figure 7 shows deviations from a straight line, we need 
to consider the different compositions of air, causing 
different absorption spectra at the time of reference 
measurement Ar(λ), and at the time of material measure-
ment, Am(λ).

If the analysed material M(λ) is the same as the calibra-
tion target, it means that Figure 7 shows the impact from 
variations of RH, where RR(λ) = Am(λ) / Ar(λ).

Figure 8 shows the relative reflectance RR(λ) for a 
3D-printed object made of PLA and at various RH using 
a single reference measurement at 20 % RH. We can see 
that the alignment of the six curves is far from perfect. 
Misalignments are in particular visible close to 1.1 µm 
and 1.38 µm.

The same measurements of PLA are used to generate 
graphs in Figure 9, but using reference measurements 
at corresponding RH. Consequently, Am(λ) = Ar(λ) = A(λ) 
ideally corresponds to the same composition of air for 
both measurement of analysed PLA as well as for the 

Figure 7. Measured relative reflectance of PTFE at differ-
ent humidity. Calibration at 20 % RH.

Figure 8. Relative reflectance of PLA at different humidity 
using calibration at 20 % RH.

Figure 9. Relative reflectance of PLA using calibration at 
each RH.
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The next two figures, Figure 12 and Figure 13 show 
the confusion matrices of the classification results, when 
three PCs were used for training, for RRD(λ) and RRH(λ) 
matrices, respectively.

The PCA of RRT(λ) was further analysed to find the 
most contributing variables (wavelength bands) by calcu-
lating the vector of loading magnitudes using Equation 3, 
in the space spanned by the first five PCs (N = 5). The 
vector of loading magnitudes M



 are shown in Figure 14a, 
where the peaks represent the most contributing wave-
lengths. We included only the first five PCs in our analysis 
as they explain 99.64 % of the total variance, as shown in 
Figure 14b.

Figure 14a shows that some of the most contrib-
uting wavelengths lie in the regions (1.1–1.2 µm and 
1.3–1.5 µm) that are susceptible to the humidity change 
(see Figure 10), but the majority of important wave-
lengths are outside these regions. In order to suppress 
the effect of wavelengths from susceptible regions on 
the classification, these wavelengths in RR(λ) of polymers 
were multiplied by zero, as shown in Figure 15.

Figure 15a shows the mean spectra of each data class, 
multiplied by the function presented in Figure 15b to 
prune the spectra such that the wavelengths susceptible 
to water vapour weigh zero, as shown in Figure 15c. This 
procedure was applied to all the data vectors of RRT(λ), 

Figure 10. Precision of measured PLA signature.

Figure 11. Measured mean relative reflectance of PTFE 
versus RH and for three spectral bands. Calibration at 
20 % RH.

Figure 12. Confusion matrix of classification result for 
RRD(λ).

Figure 13. Confusion matrix of classification result for 
RRH(λ).
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Figure 14. Analysis of RRT(λ) PCA, (a) the magnitude of loading vectors for first five PCs, (b) percent variance explained by 
the first five PCs.

Figure 15. Pruning of wavelengths (λ) susceptible to water vapour.
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RRD(λ) and RRH(λ). After the pruning of susceptible wave-
length bands, PCA was applied to create the low-dimen-
sional training and testing datasets as detailed in above. 
The classification, also detailed above, was performed. 
Table 3 shows the classification results for each method 
when full and pruned spectra were used, respectively. 
The classification results are shown with respect to the 
number of PCs used for the training and testing of the 
classifier.

Discussion
There is a major difference between using hyperspec-
tral imaging for remote sensing and using it in situ at 
an industrial site for, e.g., classification of waste mate-
rial. While the travelled path of light through the 
atmosphere for remote sensing could be hundreds of 
kilometres, the light path through air at an industrial 
site is hundreds of centimetres. The composition of 
atmospheric gases constitutes a complex optical filter 
causing wavelength bands to be blocked for remote 
sensing. Water molecules are, for example, known to 
create blocked bands within the SWIR region of light. 
It is, nevertheless, customary to assume that the SWIR 
region is completely available at in situ installations for 
hyperspectral measurements.

In this paper, it is shown that vapourised water has 
an impact even at pathlengths of hundreds of centime-
tres, especially in the case of large variations of RH. The 
method proposed to overcome this source of uncertainty 
in measurements is to apply frequent calibrations of the 
hyperspectral measurement setup such that the impact 
of varying composition of air is suppressed. The spec-
tral signature of a 3D printed object made of PLA was 
used as a test case. We found out that the uncertainty 
of measurement, computed as coefficient of variation, 
could be reduced from 5 % to 1 % in the most error prone 
wavelength region.

It is also shown that the RH-induced variations in 
measurement can drastically affect the classification of 
materials using an in situ setup. Such an effect can be 
seen in confusion matrices presented in Figure 12 and 
Figure 13. For the given example of recyclable plastic 
types, PS and background were misclassified at the rate 
of 95.7 % and 77.4 %, respectively when Am(λ) ≠ Ar(λ), 
whereas, for Am(λ) = Ar(λ) the misclassification rate was 
dropped to 4.3 % and 0 % for the same classes. As per 
Table 3, for the given test case, it was possible to reduce 
the overall misclassification rate to less than 0.4 % when 
Am(λ) = Ar(λ) and full spectra of polymers were used. On 
the other hand, it was not possible to further reduce the 
misclassification to less than 20 % when Am(λ) ≠ Ar(λ).

Frequent reference measurements could be used as a 
method to make sure that Am(λ) = Ar(λ). However, it might 
be difficult to frequently switch analysed material with 
a calibration target at an industrial installation. Another 
solution is to include the reference surface as part of 
the background.10 A second alternative method is also 
proposed to prune the wavelengths that are susceptible 
to water vapour. The classification results presented in 
Table 3 show that even a significant change in humidity 
has a minor impact on the classification if the susceptible 
bands are pruned. This method is shown to work well for 
the selected test case of polymer classification. However, 
for classification problems where most of the contributing 
variables (wavelengths) lie in the susceptible regions, 
this method will not work well, theoretically. Separate 
instrumentation for on-line recording of absorption in air 
could possibly be another feasible alternative. Figure 11 
shows non-linear dependencies for the response of spec-
tral bands versus RH. Alternatively, we think it might be 
possible to create a model for prediction of Am(λ) = Ar(λ) at 
measured temperatures and RH. Possible methods could 
be multivariate regression of empirical data or using 
data from publicly available spectroscopic databases.21 
However, such more advanced models of calibration are 
beyond the scope of this publication.

Wavelength 
band

RH(%) 
Am(λ)

RH(%) 
Ar(λ) Matrix

Misclassification rate (%)
1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs

Full 83 23 RRD(λ) 51.5 28.4 17.5 18.6 39.2 37.3 19.9
Full 83 83 RRH(λ) 51.9 12.5 2.04 1.3 0.8 0.9 0.37
Pruned 83 23 RRD(λ) 51.5 14.24 3.48 2.27 1.74 1.36 0.6
Pruned 83 83 RRH(λ) 51.9 14.09 3.48 1.66 0.9 0.53 0.15

Table 3. Misclassification rate for RRD(λ) and RRH(λ).
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Instead of using the raw spectra for training the clas-
sifier, PCA was applied to preprocess the spectra. The 
combination of PCA for preprocessing and SVM for clas-
sification was used in this research as the previous study20 
reported, the combination results in better classification 
of hyperspectral data. To validate the claim, we trained 
and tested an SVM classifier with raw spectra. The results 
of this classification are presented in Table 4. Comparing 
the results presented in Table 3 and Table 4, the classifier 
performance is clearly superior when PCA was used.

Furthermore, it is very possible that any other classifi-
cation algorithm would perform better for the polymer 
classification test case. However, it is beyond the scope 
of this research to compare different machine learning 
algorithms and find the best one for any particular clas-
sification problem. We performed the classification of 
polymers to demonstrate that the change in humidity can 
affect the classifier performance significantly, irrespective 
of which classifier is used.

The rather small volume of acquired experimental data 
presented in this paper limits the empirical evidence of 
this study. Still, in combination with knowledge devel-
oped by the remote sensing community,2,8 the evidence 
for water vapour having a significant impact on in situ 
hyperspectral imaging becomes more convincing. The 
analysed coefficient of variation and the results from 
polymer classification give a clear indication, for example 
to practitioners of in situ hyperspectral imaging, that large 
variations of RH require special attention to be paid to 
the calibration procedure.

Conclusion
The technological development of hyperspectral cameras 
has initially been driven by remote sensing applications. In 
situ applications are now emerging from different indus-
tries, such as waste sorting and the circular economy. 
Every possible way of improving measurement accuracy 
can potentially lead to improved classification results and 

higher value of recycled material. It is shown in this paper 
that vapourised water can cause a coefficient of variation 
in reflectance measurements as high as 5 % at large vari-
ation of RH for a chosen test case. It is also shown that 
the variations in reflectance measurements can have a 
drastic impact on the classification of polymers. Frequent 
re-calibrations of the imaging system ensure that the 
reference and the polymer measurements are done at the 
same RH levels, such that the misclassification is reduced 
from 20 % to less than 1 %. As an alternative to frequent 
re-calibrations, pruning of the wavelength bands that are 
susceptible to water vapour are also shown to produce 
equally good results for polymer classification.
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