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Principal components analysis (PCA), maximum autocorrelation factors (MAF), minimum noise factors (MNF) and maximum difference factors 

(MDF) models are common factor-based models used for analysis of hyperspectral images. The models can be posed as maximisation problems 

that result in a symmetric eigenvalue problem (SEP) for each model. The SEPs allow a simple theoretical comparison of the models using a PCA met-

aphor with MAF, MNF and MDF describable as weighted PCA models. The examples show that the different methods captured different signals 

in the images that can be examined individually or combined synergistically allowing for additional modelling and extended visualisation. MDF is a 

factor-based edge detection model that not only allows for additional visualisation but the opportunity to identify and exclude (or highlight) edge 

signal in the images. An example shows that models can also be used synergistically for finding and elucidating anomalies. In the example, MDF 

showed the highest sensitivity of the models studied for anomaly detection.

Keywords: maximum autocorrelation factors, minimum noise factors, maximum difference factors

Introduction
Hyperspectral images are multivariate in nature and prin-
cipal components analysis (PCA),1,2 MAF,3,4 minimum noise 
factors (MNF)5 and maximum difference factors (MDF)6 
are complementary multivariate analysis algorithms that 

can be used to explore hyperspectral images.7,8 The differ-
ences between these factor-based approaches can be 
understood by comparing the different objective functions 
presented in the Theory section. In each case, the derived 
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model results in a generalised eigenvalue problem (GEP) 
and a complementary symmetric eigenvalue problem 
(SEP). From this perspective, the MAF, MNF and MDF 
models can be described as weighted PCA models. The 
description is intended to be easily extended by practi-
tioners desiring to define their own modelling objective.

In PCA, factors are obtained that capture maximum signal 
in the image. These factors can be used to create “scores” 
images that explore the major signal in the image. In contrast, 
MAF and MNF finds factors that capture maximum spatially 
autocorrelated signal in the image. As a result, the MAF 
and MNF factors focus on variance found in contiguous 
spatial patches in an image. To accomplish this task, MNF 
and MDF define less correlated spatial structure using first 
derivative operators and for the purposes of this paper, 
MNF uses a first difference and MDF uses a first central 
difference as described in detail below. In contrast, MDF is 
a complimentary approach to MAF and finds factors that 
have maximum spatial difference in the image. MDF can 
be considered a multivariate edge detection algorithm and 
MDF scores can be combined with more traditional edge 
detection algorithms used for greyscale images. Scores 
from each model are typically inspected separately, but it 
is shown that the scores can be combined for a synergistic 
exploratory analysis of hyperspectral images.

The theory section provides a comparison of the mathe-
matical objective for each algorithm and provides informa-
tion on model derivation. Four example images are used to 
contrast specific differences in the methods. The first and 
fourth examples show the broad differences between PCA, 
MAF, MNF and MDF and how scores from the different 
methods can be used synergistically for visualisation. The 
second example also demonstrates method differences 
but shows distinct differences between MAF and MNF 
even though they only differ slightly in the algorithm as 
described in the theory section. The second example also 
shows how MDF might be used to process an image to 
exclude edge signal within an image allowing for subse-
quent modelling to ignore mixed pixels during calibra-
tion. The third example shows differences in sensitivity for 
anomaly detection for PCA, MAF and MDF. MDF showed 
the highest sensitivity for the image studied. Each example 
is also discussed in the Supporting Information (SI).

Theory
Hyperspectral images are often described as Mx × My × N 
data “cubes” X that are Mx pixels by My pixels measured 
at N spectral channels (e.g., wavelengths, frequencies or 

mass). For ease of nomenclature, and subsequent model 
descriptions, the image can be matricised to a M × N data 
matrix X where M = MxMy, and a row of X is given by the 
1 ×N vector xm for m = 1, …, M.6

In the sub-sections that follow, the maximisation objec-
tive will be defined for PCA, MAF, MNF and MDF. In 
each case, the GEP will be derived. Additionally, a vari-
able transform will provide the complementary SEP. Each 
step of the derivations is intended to allow a theoretical 
comparison of the algorithms.

Principal components analysis (PCA)
PCA is ubiquitous to multivariate analysis1,2 and is only 
briefly described here to allow comparison to MAF and 
MDF. In PCA, it is proposed that scores, t, are given by 
t = Xp where p are the principal component loadings. The 
objective is to maximise tTt for pTp = 1. The PCA maximi-
sation objective can be written as

	 ( )
T T

TmaxO
æ ö÷ç ÷ç= ÷ç ÷ç ÷è øp

p X Xpp
p Ip

.	 (1)

The next step is to take the derivative with respect to p 
and rearrange it to give the GEP given by

	 XTXp = λIp.	 (2)

(Additional details of the derivation are shown in the 
next sub-section for MAF.) The GEP is rarely shown for 
PCA and is provided here to allow for comparisons to 
MAF and MDF that follow. From Equation 2, it is trivial to 
obtain the more commonly shown SEP for PCA given by

	 XTXp = λp.	 (3)

where p is the eigenvector and the eigenvalue is given 
by λ = pTXTXp.

Some of the properties of the PCA decomposition 
follow. The rank of X is less than or equal to the number 
of pixels, M, or variables, N: R = rank(X) ≤ min(M, N). Each 
principal component (PC), pr for r = 1, …, R, is a “factor” in 
the PCA model. Typically, the eigenvalues are distinct and 
the loadings can be collected into the orthogonal matrix 
P = [p1   p2   …   pR] where PTP = IR, and the scores can be 
collected into the matrix T  = [t1     t2     …   tR] where the 
columns of P are orthogonal ( 1 1T 1k k r r

- -
=t t t t  for k = r 

and for k ≠ r). The columns of P and T are orthogonal due 
to the fact that Equation 3 is a SEP. The orthogonality of 
P is discussed in most standard books on linear algebra 
and provides desirable mathematical and computational 
properties as well as useful properties for model interpre-
tation.
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For hyperspectral images with large numbers of pixels it 
is expected that, mathematically, R will equal N. However, 
due to redundancy in the image the latter PCs (those PCs 
with larger r) will be associated with random noise in the 
image and PCA models are typically truncated to retain 
fewer PCs in the model. For a PCA model with K factors 
with K < R, the loadings matrix is given by P = [p1   p2   …   pK] 
and the model of X is given by

	 X = TPT + E	 (4)

where the approximation Tˆ =X TP  is rank K and the resid-
uals E correspond to noise signal (E is of rank R – K). K is 
often referred to as the chemical rank or pseudo-rank of 
X and is typically less than the mathematical rank (K < R) 
but can often be significantly smaller (K << R). Therefore, 
PCA can be considered a lossy data compression tech-
nique and, due to the partitioning of noise into E, PCA 
can also be considered a noise-filtering technique.

Maximum autocorrelation factors (MAF) and 
minimum noise factors (MNF)
In MAF, it is proposed that scores, t, are given by t = Xw 
where the weights w are the MAF factors.3–5 The objective 
is to maximise tTt for the maximisation objective given by

	 ( )
T T

T T T
1 1

maxO
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w X Xww
w X D D Xw

	 (5)

where D1 is the spatial first derivative operator.3,4 For the 
purposes of this paper, MAF and MNF5 are differentiated 
by defining D1 slightly differently: for MAF, D1 corresponds 
to the first central difference operator (see Equation A.1 of 
Reference 6) and in MNF D1 corresponds to the first differ-
ence operator (see Equation A.2 of Reference 6), but it is 
noted that D1 can be generalised to other first difference 
operators. For example, any Savitzky–Golay9 first deriva-
tive operator might be used. As in PCA, the numerator 
corresponds to signal in the image but the denominator 
now replaces I with T T

1 1X D D X that corresponds to the first 
spatial derivative on the image in both the horizontal (left/
right) and vertical (up/down) image directions. In practice, 
the operator must account for edges in the matricised 
image to avoid end-effects in the calculation of first differ-
ences. In the derivation of the MAF model, the derivative 
of Equation 5 with respect to w is

	

( ) ( ) ( )
( )
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where terms in parentheses on the right-hand side, (    ), 
are scalars. Setting the result in Equation 6 to zero gives

( ) ( )T T T T T T T T
1 1 1 1 0- =w X D D Xw X Xw w X Xw X D D Xw

Rearranging provides the GEP for MAF:

	 T T T
1 1l=X Xw X D D Xw 	 (7)

where the eigenvalue λ is given by the Rayleigh quotient
T T

T T T
1 1

l=
w X Xw

w X D D Xw
.

For simplicity in notation, define Σ  = XTX and 
Σ1 

T T
1 1 1=Ó X D D X. Equation 7 is then given by

	 Σw = λΣ1w	 (8)

and λ = wTΣw / wTΣ1w.
A variable transformation is used to obtain the corre-

sponding SEP. Starting with Equation 8 and defining 
Σ1 = Σ1

0.5Σ1
0.5, the transformation is given by the following 

steps

ΣΣ1
0.5Σ1

0.5w = λΣ1
0.5Σ1

0.5w,

Σ1
–0.5ΣΣ1

–0.5Σ1
0.5w = λΣ1

0.5w, and finally

	 Σ1
–0.5ΣΣ1

–0.5p = λp	 (9)

where p = Σ1
0.5w and w = Σ1

–0.5p and, as is conventional 
for PCA, pTp  = 1. Equation 9 can be interpreted as 
PCA of X whitened, or de-weighted, by the first 
spatial derivative, i.e. PCA of the matrix XΣ1

–0.5. The 
eigenvectors of the MAF model can be collected into 
an orthogonal N  × K matrix P  = [p1     p2     …    pK] where 
PTP = IK. However, W = Σ1

–0.5P is not generally expected 
to be orthogonal and, in general, wTw ≠ 1. The scores 
T = XW = XΣ1

–0.5P have orthogonal columns such that 
TTT is diagonal.

Maximum difference factors (MDF)
In MDF, it is proposed that scores, t, are given by t = D1Xw 
where the weights w are the MDF factors.6 The objective 
is to maximise tTt for the maximisation objective given by

	 ( )
T T T

1 1
T T T

2 2

maxO
æ ö÷ç ÷ç= ÷ç ÷ç ÷çè øw

w X D D Xw
w

w X D D Xw
	 (10)

where D1 and D2 are the spatial first and second deriv-
ative operators, respectively. The MDF signal is the first 
spatial derivative in the image, the denominator is the 
second spatial derivative operator. Following a similar 



4	 A Comparison of Common Factor-Based Methods for Hyperspectral Image Exploration

development for MAF given above, the MDF GEP is 
given by

	 Σ1w = λΣ2w	 (11)

and the corresponding SEP is given by

	 Σ2
–0.5Σ1Σ2

–0.5p = λp.	 (12)

Equation 12 can be interpreted as PCA of D1X 
de-weighted by variance in the second derivative, i.e. 
PCA of the matrix D1XΣ2

–0.5. The eigenvectors of the MDF 
model can be collected into an orthogonal N × K matrix 
P = [p1   p2   …   pK] where PTP = IK. However, W = Σ2

–0.5P is 
not generally expected to be orthogonal and generally 
wTw ≠ 1. The scores T = D1XW = D1X Σ2

–0.5P have orthog-
onal columns such that TTT is diagonal. A major differ-
ence between MDF compared to PCA and MAF is that 
the scores are calculated vertically (UD) and horizontally 
(LR) resulting in a doubling of the size of the scores for 
an image:

T T T
UD LR

é ù= ê úë û
T T T .

Thus, in MDF it makes intuitive sense to examine indi-
vidual UD and LR scores images to account for lighting 
effects. However, when the interest is identifying edges it 
may make more sense to examine the mean Hotelling’s T2 
statistic for the two directions. Hotelling’s T2 and Q resid-
uals were calculated according to procedures outlined in 
Jackson,1 and Wise and Gallagher.10

Summary of PCA, MAF/MNF and MDF 
models
Table 1 summarises the models derived in the preceding 
sections. In each case, the matricised scores are rear-
ranged back to the image plane for inspection. The table 
shows a symmetry between the methods and that all 
three can be interpreted though a PCA metaphor for 
weighted signal.

Algorithm for MAF and MDF
The QZ algorithm is a direct method often used to solve 
non-Hermitian GEPs.11 In this work the problems are 
Hermitian and non-complex, and the algorithm solved the 
SEPs using the singular value decomposition (SVD). The 
advantage of this approach is that the different factorisa-
tions can be described and compared using the well-un-
derstood PCA metaphor with real, orthogonal scores and 
loadings. However, the inverses in the proposed SEPs 
may not exist or be ill-conditioned and to account for this 

potential problem a regularisation procedure was used 
(also described in Reference 12). For a symmetric matrix 
Σ, the SVD is given by

	 Σ = VΛVT	 (13)

where V is an orthogonal matrix of eigenvectors (VTV = 1) 
and Λ is a diagonal matrix of non-negative eigenvalues, 
λn for n = 1, …, N. The regularisation replaces λn with dn 
given by

	 1 c
2 2 2
c 1

/
1n n n

n

N
d

N
l

l l
l l

+ -
® =

+
	 (14)

where λ1 is the first eigenvalue of Σ and Nc is an input 
parameter that describes the maximum condition number 
for the regularised Σ such that

1 c0
lim /
n

nd N
l

l
®

® .

The regularised inverse of Σ0.5 is given by

	 Σ–0.5 = VD–0.5 VT	 (15)

where D is a diagonal matrix with elements given by dn 
for n = 1, …, N. Matrix inverses were regularised using 
Nc = 104 in this work.

For each model, the percent variance captured by each 
factor is based on the scores. In PCA the percent variance 
captured by each factor is calculated for X. For MAF and 
MNF it is for XΣ1

–0.5 and for MDF it is for D1XΣ2
–0.5.

When modelling all pixels in an image, MAF and MDF 
exclude the outer pixels at the image boundary when 
calculating the spatial derivatives to avoid end-effects 
in the Savitzky–Golay filter.9 However, all pixels are 
included when calculating scores. When pixels are 
excluded in an image (e.g., due to defects, artefacts 
or undesirable signal that should not “contaminate” 
the model), the appropriate surrounding pixels are also 
excluded when calculating spatial derivatives to avoid 
end-effects (e.g., see https://www.researchgate.net/
publication/338518012_Savitzky-Golay_Smoothing_
and_Differentiation_Filter).

Examples
Three examples are shown below. Example 1 compares 
results from the different algorithms for an infrared 
image of an Excedrin tablet. This example demon-
strates the differences in signal captured and also how 
scores from the different methods can be combined 

https://www.researchgate.net/publication/338518012_Savitzky-Golay_Smoothing_and_Differentiation_Filter
https://www.researchgate.net/publication/338518012_Savitzky-Golay_Smoothing_and_Differentiation_Filter
https://www.researchgate.net/publication/338518012_Savitzky-Golay_Smoothing_and_Differentiation_Filter
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synergistically. Example 2 is a popular AVIRIS image of 
Indian Pines often used to demonstrate the performance 
of classification models. Here, the results show that 
although MAF and MNF are only slightly different they 
can capture different signal. The example also shows 
how MDF can be used to find and eliminate edge signal 
that might interfere with the calibration of classification 
models, and that the scores can be concatenated for 
further analysis. Example 3 is a Landsat 8 image of north 
central Washington state in USA. This example shows 
how the methods can be used for anomaly detection 
in the images and that detected signals can be used 
synergistically to help elucidate the source of detected 
anomalies. A fourth example shows results for an energy 
dispersive spectroscopy image and demonstrates signif-
icant differences. Additional information on the exam-
ples can be found in the SI.

Auto-contrasting is used for many of the images shown 
below to enhance visualisation. Auto-contrasting consists 
of mean-centring the scores and saturating at ±2.5 stan-
dard deviations prior to displaying in an image.

Example 1. Excedrin tablet
An infrared image of an Excedrin tablet that contains 
aspirin, acetaminophen, caffeine and microcrystalline 
cellulose was studied. The tablet was measured with a 
tuneable laser in the mid-infrared from 1800 cm–1 to 
800 cm–1 over an approximate 2 mm square area. The 
image cube was 218 ×208 pixels by 250 wavenum-
bers. The image can be downloaded at https://eigen-
vector.com/resources/data-sets/ and was provided by 
Agilent (https://www.agilent.com), and was discussed in 
Reference 13. For each algorithm shown, the data were 
mean-centred prior to modelling.

Figure 1 shows scores images for the first two factors 
(PCs 1 and 2) for PCA, MAF, MNF and the mean MDF 
score (mean of the vertical, UD, and horizontal, LR, 
scores). [PCs 3 and 4 are shown in the SI.] MAF and 
MNF show similar spatial structure for this image. MAF 
and MNF also show significant spatial structure on PC 1 
and 2, but PCA shows less spatial structure on PC1—the 

algorithms clearly capture different signal. PC 2 for PCA 
captures spatial structure similar to MAF’s PC 1. The 
MDF scores show different forms of edge information 
on PC 1 and 2 because, like PCA and MAF, MDF is 
factor-based and can be considered a “factor-based 
edge detection” algorithm. The MDF images provide 
complementary information for image visualisation and 
exploration. It is interesting to note that the PCA load-
ings are the most different for the different decompo-
sition methods. The fraction variance captured by PC 
1 for MAF and MDF are much smaller than for PCA—
recall that the variances are calculated for the weighted 
PCA for MAF and MDF and that the correlation struc-
ture can be significantly modified due to the weighting 
(i.e., the data appear less correlated for MAF and MDF 
than for PCA).

Figure 2 shows composite images for the Excedrin 
image. The left-hand set of four images includes all 
pixels in the modelling calculation and the right-hand 
set of four images has edge pixels, identified by the 
mean MDF Hotelling’s T2, excluded from the model-
ling step. (The excluded edges correspond to pixels 
with high mean MDF T2 values separating contiguous 
patches in the image.) Although the excluded pixels 
were projected onto the model, and could be visual-
ised on the right-hand, the excluded edge pixels have 
been masked and are not displayed (they are seen as 
dark pixels). Noting the results in Figure 1 suggests 
that PCA factors 2, 3 and 4 correspond best to the 
signal in the other methods for factors 1, 2 and 3. 
Therefore, for ease of comparison, the PCA scores 
are shown for factors 2, 3 and 4 for PCA and 1, 2 and 
3 for MAF, MNF and MDF. It is interesting to note 
that the right-hand images appear to capture slightly 
different information in the scores than the left-hand 
images as indicated by the different colours in the 
false colour images. The bottom-right image in the left-
hand images shows a composite of the scores on PCA 
PC 1 (red), MDF PC 2 UD (green) and LR (blue) as an 
example of using the scores from different algorithms 
synergistically.

Algorithm GEP SEP Scores Eigenvalue
PCA Σp = λIp Σp = λp t = Xp λ = pTΣp / pTIp = pTΣp
MAF Σw = λΣ1w Σ1

–0.5ΣΣ1
–0.5p = λp t = XΣ1

–0.5p λ = wTΣw / wTΣ1w
MDF Σ1w = λΣ2w Σ2

–0.5Σ1Σ2
–0.5p = λp t = D1XΣ2

–0.5p λ = wTΣ1w / wTΣ2w

P is orthogonal, the columns of T are orthogonal, W is not generally orthogonal.

Table 1. PCA, MAF/MNF and MDF model comparisons.

https://eigenvector.com/resources/data-sets/
https://eigenvector.com/resources/data-sets/
https://www.agilent.com
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Figure 1. PCA, MNF, MAF and mean MDF scores on PC 1 (top, left) and 2 (top, right) for the Excedrin image [auto-con-
trasted]. Bottom: corresponding loadings plots.

Figure 2. Composite images for the Excedrin image. The left set of four images includes all pixels. The right 
set of four images has edge pixels identified by MDF excluded [auto-contrasted].
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Example 2. Indian Pines
Comparison of PCA, MAF and MDF for an AVIRIS 
image
The Indian Pines data set14 is often used to demonstrate 
the performance of classification algorithms. The image 
is 145 × 145 pixels measured at 220 bands from 400 nm 
to 2500 nm over several agriculture fields. This example 
shows how the image decomposition techniques might 
be used to prepare the image for classification and how 
scores from the different decompositions can be concat-
enated and used for classification. The image data were 
preprocessed using 1-norm normalisation followed by 
mean-centring.

Figures 3 and 4 show the scores and loadings on PC 1 
to 4 respectively for the four decomposition methods. As 

expected, PCA and MAF capture slightly different signals 
and MDF captured edge signal. It is interesting to note 
that the MNF image on PC 1, that uses a first difference 
for D1, looks significantly sharper than the MAF image 
that uses a first central difference. Additionally, MAF and 
MNF capture different signal on PCs 2–4. This shows 
that the definition of the D1 can impact the MAF/MNF 
results.

Figure 5 shows results where pixels with high Q 
residuals (unusual signal, Figure SI.12) and high MDF 
Hotelling’s T2 were excluded from the modelling step. 
Pixels with high Q are often excluded because this signal 
can diminish model performance. For this study, pixels 
with Q greater than the 99 % confidence limit for each 
decomposition method were excluded. It is also difficult 

Figure 3. PCA, MDF, MAF and MNF mean scores for the Indian Pines image [auto-contrasted].



8	 A Comparison of Common Factor-Based Methods for Hyperspectral Image Exploration

Figure 4. Loadings for PCA, MDF, MAF and MNF mean scores for the Indian Pines image.

Figure 5. PCA and MNF scores for the AVIRIS Indian Pines image with high Q and edges excluded 
[auto-contrasted].
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to provide quality ground truth edge signal (mixed pixels) 
in images—especially for images obtained in remote and 
standoff sensing. The result is that edge signal makes 
characterisation of classification performance more diffi-
cult. For this work, edge signal identified using MDF 
Hotelling’s T2 was excluded: MDF UD and LR pixels with 
Hotelling’s T2 > 10 were removed prior to additional anal-
ysis. PCA and MNF modelling results after these “data 
cleaning” steps are shown in Figure 5. With the excep-
tion of an apparent sign ambiguity, it appears that PC 
1 for PCA and MNF capture similar signal with differ-
ences between PCA and MNF more apparent in the 
higher PCs. Classification models can take advantage of 
the differences in captured signal between the methods 
by concatenating scores into a consensus model. For 
example, the results for PCA of the autoscaled concat-
enated scores from PCA, MAF and MNF are shown in 
Figure 6. The loadings plot for PC 1 on the consensus 
model (Figure 6 right) shows high correlation between 
the PCA, MAF and MNF scores on PC 1. The observation 
of high loadings with opposite signs for PCA and MNF is 
consistent with the interpretation given above of a sign 
ambiguity between the PC 1 images in Figure 5. The 
analysis of concatenated scores is another example of 
synergistic use of the different models.

Example 3. Landsat 8 image
A section of a Landsat 8 [image LC08_L1TP_045027_2
0170621_20170630_01] corresponding to the north-
west end of Lake Chelan, WA was analysed. The image 
was courtesy of the US Geological Survey FILE_DATE = 

2017-06-30T11:25:51Z (DATE_ACQUIRED = 2017-06-
21, SCENE_CENTER_TIME = 18:49:12.7536510Z) and 
is a portion of the same image shown on the cover of 
https://www.impopen.com/vi-toc/V_IASIM-2018. The 
image is 900 pixels wide by 700 pixels high. Eight bands 
at an approximate 30 m spatial resolution were included 
in the analysis (see Table SI.3 in the SI).

The interest in this example is anomaly detection, but 
small anomalies (e.g., with only a few pixels) can be diffi-
cult to identify from the image directly. Instead, plots of 
Q versus T2 can be useful as shown in Figure 7 using 
autoscaling preprocessing and keeping four PCs for each 
model. In this case, PCA, MAF and MDF LR identified 
the same two outlier pixels while MDF LR identified two 
additional outlier pixels. MDF UD identified an addi-
tional four outlier pixels. MAF identified an unusual pixel 
(red square marker in Figure 7) that was on the far left-
hand side of the image, while the remaining eight outliers 
were in close proximity to each other suggesting they are 
related. Of these eight pixels, PCA and MAF caught the 
same two outliers while MDF caught an additional six 
pixels showing that the methods are sensitive to different 
types of spatial signal in the image and are complemen-
tary in identifying an anomaly in the image.

Once an anomaly is identified, other preprocessing can 
be used to enhance the anomalous signal and poten-
tially elucidate its source. An example using autoscaling 
and generalised least squares (GLSW) decluttering12,15,16 
(de-weighting) is shown in Figure 8. In this image, the blue 
pixels in Figure 8 (left) correspond to water and the declut-
tering was based on the identified classes shown in Figure 

Figure 6. PCA results of the concatenated scores from PCA, MAF and MNF: scores (left) [auto-contrasted] and 
loadings (right).

https://www.impopen.com/vi-toc/V_IASIM-2018
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8 (right): Forest and Peaks. GLSW did not use mean-cen-
tring of the classes and used a regularisation parameter of 
α = 0.002. It is important to note that pixels associated with 
the anomaly were not included in the GLSW de-weighting 
because this is the signal to be enhanced in an effort to 
elucidate the cause of the anomaly. The result is that 
GLSW de-weighted the Forest and Peaks signal prior to 
modelling. Rectangles in the upper-right in the images 
of Figure 8 indicate the location of the anomaly shown 
in Figure 9. The scores on MDF LR PC 4 (Figure 9) show 
very strong signal seen as extreme white and black pixels 

indicated by the arrow (this image was saturated at ± 8). 
Pixels in the images represent an area of approximately 
30 m × 30 m, and the MDF LR image suggests that the 
anomaly was due to an aircraft flying from top-to-bottom 
in the image with a contrail trailing towards the top of the 
image. Although the extreme pixels were also seen in the 
MDF UD image (not shown), the contrail was not clearly 
apparent. However, the contrail was clearly seen on PC 4 
in the MDF LR image; MDF was more sensitive in the LR 
image than the UD image. The difference in sensitivity was 
likely due to differences in lighting in the image. MDF was 

Figure 7. Q vs T2 for PCA (top, left) and MAF (bottom, left) and MDF on the right. The legend indi-
cates which decomposition method identified the outliers.

Figure 8. (left) MAF PCs 1, 2, 3 RGB false colour image [auto-contrasted], (right) classes identified for de-weighting 
using GLSW ( Class 0,  Forest,  Peaks).
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also more sensitive than MAF and PCA. This enhanced 
sensitivity was attributed to the fact the MDF factors were 
based on local variance in the signal in contrast to global 
variance used in PCA and MAF.

Example 4. Comparison of PCA, MAF and 
MDF for an EDS image
In this example, six types of wires made of different alloys 
were embedded in epoxy. The sample was then cut and 
the exposed ends were measured with energy dispersive 
spectroscopy (EDS)17 and discussed in Reference 6. The 
wires were arranged in rows with the top row 100 % Ni, 
Row 2 36 % Ni, 64 % Fe, Row 3 70 % Cu, 30 % Zn, Row 4 
16 % Cr, 84 % Fe, Row 5 13 % Mn, 4 % Ni, 83 % Cu, and 
the bottom row 100 % Cu.

Figures 10 and 11 shows scores images and loadings, 
respectively, for PCA, MAF and MDF for four factors. The 
observed spatial patterns for PCA and MAF are similar but 
the colouring (yellow is high and blue is low) is different 
indicating that the two algorithms capture different signal. 
It is interesting that the scores for PCs 3 and 4 for both 
PCA and MDF appear to be focused on a similar signal 
(similar location) in the images while that spatial statis-
tics for MAF on these factors is significantly different. In 
summary, the results show significant differences between 
the methods. Figure 10 (bottom right) shows synergistic 
visualisation on PC 4 for PCA and MDF.

Conclusions
Principal components analysis (PCA), maximum auto-
correlation factors (MAF), minimum noise factors (MNF) 
and maximum difference factors (MDF) can all be posed 
as a maximisation problem that ultimately yields a 
symmetric eigenvalue problem (SEP) for each model. 
The SEPs allow a simple comparison of the models for 
analysis of hyperspectral images using a PCA meta-
phor with MAF, MNF and MDF describable as weighted 
PCA. The examples showed how the different methods 
captured different signals in the images and the scores 
from each method can be combined synergistically 
allowing for additional modelling and extended visual-
isation. MDF is a factor-based edge detection model 
that not only allows for additional visualisation but the 
opportunity to identify and exclude (or highlight) edge 
signal in the images. The third example showed that 
models can also be used synergistically for finding and 
elucidating anomalies. In the example, MDF showed the 
highest sensitivity of the models studied for anomaly 
detection.
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Figure 9. MDF LR scores on PC 4 corresponding to the region identi-
fied in rectangles in Figure 7. The right image is a zoom of the region 
in the rectangle in the left image.
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Figure 10. The top left four panels show PCA scores images, the top right four panels show MAF scores images and the 
bottom four panels show MDF scores images.

Figure 11. Left: loadings for PCs 1 and 2 for the three decompositions. Right: PCs 3 and 4.
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