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Geometallurgy is at the core of life-of-mine value chain optimisation, with the aim of integrating geoscientific 
disciplines along with mining engineering and minerals processing. The objective is to link comprehensive 
geological, geochemical, mineralogical and geotechnical information with metallurgical and mining variabil-
ity - based on spatially distributed samples. The spatial coverage is a crucial element in this process. Geo-
metallurgy samples are used for metallurgical testing in the service of plant and process design and optimi-
sation. To avoid discrepancies between the expected and actual process performance, geometallurgical test 
work must be based on representative samples collected and processed in compliance with the Theory of 
Sampling (TOS). However, even if samples are initially collected to populate a multivariate block model, 
most of TOS’ recommendations for estimating sampling protocols and sample representativeness is univari-
ate. While the univariate approach is sufficient when a sample must be representative for one property only 
e.g., for grade estimation, it fails to properly qualify representativeness of a sample which must be repre-
sentative for multiple properties such as for geometallurgical purposes. Indeed, a geometallurgy sample is 
considered representative sensu stricto only if its metallurgical behaviour is representative of that of the full 
zone of the orebody it represents. This can only be achieved if-and-when geo-metallurgical samples are rep-
resentative for the full set of ore properties that influence process performance. The critical success factor 
of multivariate representativeness can be assessed using multivariate approaches, such as the multi-vario-
gram, which allow us to summarise the global variability of multiple properties into a single characteristic 
function. This approach could be optimised by using downstream results from geo-metallurgical process 
modelling, to select or weight, the individual property contributions to the multi-variogram according to their 
importance, thereby allowing to optimise a specific geometallurgical sampling procedure in terms of sam-
pling mode, sampling frequency and the number of increments involved according to the overall process 
performance. 

Introduction 
The Theory of Sampling (TOS) is inextricably linked to the minerals and mining industry as the source of inspiration for Gy’s sam-
pling theory1. In the mining, and many other industries, technical and business decisions, as well as project evaluations are heavily 
dependent on representative sample collection along the entire mine value chain from exploration to closure2,3. The optimisation of 
this value chain over the life-of-mine (LOM) is enabled by the application of geometallurgy4,5. Geometallurgy - often reduced to a 
combination of geology and mineral processing to document the empirical variability within an orebody and to quantify the impact 
of ore properties onto process performance - is a multi-disciplinary holistic approach aiming at the best possible use of mineral 
resources in terms of energy and resource efficiency, environmental impact and - of course - revenues, by integrating all relevant 
geoscientific and engineering disciplines5,6. It involves understanding and measuring geological, mineralogical and metallurgical 
ore properties to generate a database to be integrated into a spatial predictive model for mining operation and mineral processing, 
as well as mine planning and financial analysis of future or existing mines7,8. The aims are to improve resource management, 
metallurgical processes performance, and ultimately the net present value (NPV) of a mining project, while reducing operational, 
technical and environmental risks4,6,9, all aligned with the two UN world goals featured as lead-motifs for this WCSB10. 

Traditionally, composite samples that are reported to be ‘representative’ of the orebody are collected based on grade and spatial 
location for metallurgical test work yielding metallurgical parameters (e.g., throughput, recovery) used to design process plant10. 
But in some cases, after the first years of operation, the commissioned process plant can be found not to be performing as planned, 
which translates into an overrun of the Capital Expenditure (CAPEX) or the money required to build and commission a mining 
operation run out before the point where it can start producing a saleable concentrate9. The most often identified reason is that this 
approach does not account well enough for spatial variability within the orebody, which translates into unnecessary processing 
variability over time due to insufficient and unrepresentative material characterisation which has led to inappropriate initial test work. 
Geometallurgy aims to resolve such unwanted variability, but still requires high-quality metallurgical test work, most emphatically 
based on representative samples collected and processed within the framework of TOS11.  

Sampling for geometallurgy 
Sample Types 
Geometallurgy heavily relies on sampling of different sample types, situations, size and scales each with distinct objectives and 
requirements. In practice four different sampling procedures can be differentiated12: 

 In-situ information which is extracted virtually/digitally from the orebody, for example in the form of geophysical data, 
downhole measurements such as density, conductivity, or assays. 

 Ex-situ physical sampling extracted from the orebody, e.g., drill cores, cuttings, or chips. 
 Process sampling when samples are extracted from a moving stream of ore, regarded as a 1D lot, in the mineral processing 
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plant. This can be particulate and solid material extracted from a conveyor belt (run-of-mill, gravel, feed, etc.) or pipelines 
(slurries, process water, etc.). 

 In-line sampling (in-line sensor measurements) collected from moving streams (belts, pipes, froth product/flotation sta-
tions). This includes a wide variety of analytical technologies collectively known as PAT (Process Analytical Technologies) 
e.g., Raman, IR, XRF, NAA, Camera-based image analysis)13. 

In terms of dimensionality, these sample types can be grouped in two categories: (i) spatially distributed samples (i.e., in-situ and 
ex-situ samples) and temporally distributed samples (i.e., process samples and in-line samples). Both categories are critical for the 
success of the geometallurgy approach, even if spatially distributed samples remain a prerequisite to build the 3Dgeometallurgy 
model. The importance of each sample type also varies depending on the project status. Spatially distributed samples are critical 
at the early stage of the project for strategic geometallurgy whereas process samples and data are more critical at the operating 
stage for tactical geometallurgy14. These two levels of implementation of geometallurgy differ by the required granularity and the 
decision-making time horizons: strategic geometallurgy focuses on the whole orebody and long-term LOM, whereas tactical 
geometallurgy has a short- to medium-term operational focus during mining14. 

Sample scale and size 
In terms of scale and size, the geometallurgy approach usually employs small spatially distributed samples to perform lab-scale 
tests which are used as proxies for process parameters which are then compared with larger metallurgical samples to establish 
correlations prior to modelling5. Small process samples are also collected for process control, reconciliation or development15.  
Even larger bulk metallurgical samples, representative of both grade, spatial and population distributions within the ore zone, are 
collected for pilot testing and plant design16.  

Number of samples 
Some generalised recommendations exists for numbers of samples per relevantly identified geometallurgy domains or ore types, 
but this approach most often require proper analysis on a case-by-case basis, especially as concerns how to sample across inter-
sections10,17. Factors like in-situ heterogeneity (e.g., grade, alteration, mineralogy and texture), orebody size and number of domains 
must be taken into considerations and samples evenly distributed10. The number of samples required to forecast different geomet-
allurgy parameters varies significantly depending on the targeted parameters (e.g., mass pull, recovery rates, concentrate quality) 
and the level of reliability required17. In practice, the data spacing required is that of an Indicated/Measured resource with the drill 
grid define via the use of the semi-variogram (referred to as variogram). In most cases however, such variographic analysis is based 
on univariate grade or elemental assay only10,18. 

Defining a representative geometallurgy sample 
A sample can be described as being representative when it results in acceptable levels of bias and precision19. Hence, besides 
sample type, size and number, one of the main difference between sampling for geometallurgy compared to traditional sampling 
program in the minerals and mining industry, is that samples must be representative for several properties as opposed to one 
parameter only as is tradition (i.e., the grade)20. Indeed, by definition geometallurgy is multivariate (multi-component) as it aims at 
predicting and quantifying the full multi-component metallurgical performance based on geological, geochemical, textural and min-
eralogical ore characteristics, which is hardly optimal when considering only one analyte21. Indeed geo-metallurgical samples are 
always collected with the purpose of acquiring multivariate data through a comprehensive set of measurements (e.g., chemical or 
mineralogical assay, hardness) or testing (e.g., Bond Work index, kinetic flotation test, leaching test)10,18. The resulting multivariate 
dataset is then either integrated into a 3D block model, when dealing with drill core samples for instance, or with a process model, 
when dealing with process sampling. In either case, the outcome of the model, such as the mining bloc model value or the simulated 
process performance, is directly dependant on the quality of the input variables of which there are always many. Thus, the issue of 
multivariate representativeness is at the core of geo-metallurgical sampling. This is especially relevant concerning optimal definition 
of operative Decision Units (DU), see below. It’s fair to say that this issue is a work in progress, very challenging and therefore very 
interesting. 

Spatial coverage – inferential statistics to the rescue 
The overarching problem in geometallurgy is how to design a sampling campaign that guarantees the necessary-and-sufficient 
spatial coverage of the entire mineralisation or orebody? Many of the elements involved in a general solution are known to the geo-
metallurgical realm, but the critical success factor will always be how to sample a 3-D body, or a 1-D drill core (if you can sample 
a 1-D core adequately, you can sample any number, going a long way towards a full 3-D body). Though always strongly dependent 
upon the specific orebody, the general problem is that one cannot sample the entire (1-D, 3-D) body, however desirable would be 
full sampling, full coverage, full certainty, full confidence in the ensuing test work. One always must sample in time (dynamic lots) 
and/or space (stationary lots), e.g., what fraction of the possible total number of samples that could be extracted in a lot, are needed 
to make a satisfactory geometallurgical characterisation with respect to a desired confidence and reliability? For example, it is up 
to project management to decide a priori its desired confidence level (X %) that no more than Y % of samples may fail a specific 
quality criterium, e.g., may exceed an analyte or component Z maximum concentration threshold. 

Bringing in a modicum of statistical rigor, prior to any sampling event, an operative Decision Unit (DU) must be established; the 
DU is the material volume that an analytical result makes inference to. A lot is a collection (population) of individual DUs that will be 
treated as a whole (accepted or rejected), depending on the analytical results for individual Decision Units. The application of the 
Theory of Sampling (TOS) is critical for sampling the material within a Decision Unit. However, knowledge of the analytical 

  

  

concentration of interest within a Decision Unit will not necessarily provide information on unsampled Decision Units, especially for 
heterogenous (or very heterogeneous) lots like many mineralisations and orebodies, where DUs can be of very dissimilar charac-
teristics. The very geometallurgy variability issue spills over into the critical issue of case-relevant DU definition. While this issue 
undoubtedly looms large in many geo-metallurgical projects, there are no universally applicable rules at this time. 

In such geo-metallurgical cases where every DU cannot possibly be sampled but where the spatial coverage demand is always 
marked, application of non-parametric statistics can be used to make inference from sampled Decision Units to Decision Units that 
are not sampled. The combination of the TOS for sampling of individual Decision Units along with non-parametric statistics offers 
the best possible inference for situations where there are more Decision Units than can practically be sampled physically. Recently 
Ramsey and Esbensen (2022) presented this combined TOS-statistics sampling scope in a fully worked-out framework, ready to 
be taken into the sampling realm, including geometallurgy22; the title tells it all: “Inferential statistical sampling of hyper-heterogene-
ous lots with hidden structure: the importance of proper Decision Unit definition”. 

Theory of Sampling (TOS) and variographic analysis 

TOS and univariate variographic analysis  
Introducing TOS and variographic analysis in the context of this paper for the World Conference of Sampling and Blending, 
WCSB10) must surely be one of the most unnecessary tasks conceivable. Suffice to direct attention to no less than three recent 
textbooks23–25, all three conveniently presented in a comparison format TOS Forum, issue 10 (2020)26. Variographic data modelling 
has been presented in very many contexts (not least in the three textbooks referred to above), but also specifically for the present 
audience in Minnitt & Esbensen 201827 and in Pitard and Minnitt 200828. The reader will find a plethora of further references and 
scores of application examples in these five exposés. 
   For the present scope suffice to point to the imperative of representative sampling procedures overall, whether directed at sta-
tionary or moving (process) lots. On this basis, a variographic data model allows powerful insight into how well a particular sampling 
system/procedure/solution has succeeded in eliminating and/or reducing maximally all detrimental Incorrect Sampling Errors (ISE), 
Correct Sampling Errors (CSE) as well as the Total Analytical Error (TAE) effects on the analytical results. Variographic data mod-
elling is enormously powerful and comprehensive – indeed it has only one negative to it, it is manifestly only univariate. Only! 

TOS and multivariate variographic analysis 
Although, the need for TOS to enter the multivariate realm was already exposed at WCSB229, application of TOS so far have been 
almost exclusively been univariate11. However perfunctory multivariate approaches are well-known in two disciplines related to 
geology, geochemistry, mining, mineral processing a.o., geostatistics and chemometrics, and it is from these disciplines that two 
solutions have recently been proposed to integrate the multivariate nature of heterogeneity with TOS.  

An initial solution derived from the world of chemometrics is to reduce the dimensionality of the dataset through application of  
Principal Component Analysis (PCA) and to model a variogram on the scores of the first few principal components30. This approach, 
referred to as variogram (t-score), offer the advantage of combining a variable reduction procedure that describes the correlation 
between all the variables involved in the multivariate data and which highlights the hidden structures and spatial (or temporal) 
patterns through variables grouping (the PCA) to a procedure that characterises autocorrelations within an ordered dataset, the 
variogram31. Alternatively, a ‘reverse’ approach, referred to as PCA (variograms), consists in applying PCA analysis on individual 
variograms for each variable, which allows to conduct similar data analytical interpretations and results, but with the benefits of 
knowing the individual variability characteristics of each individual variables32,33. Application of this complementary ‘dual’ approach 
has to be guided by the specifics of a particular context22-25. 

Another approach, derived from the world of geostatistics, which recently was introduced to the realm of TOS (WCSB7) is the 
multivariate variogram, also referred to multivariogram34. In multivariate variographics, each measured variable xi (e.g., chemical 
analytes, physical properties) is considered collectively as one multivariate dataset and combined in one vector, X, with p elements 
(the p individual variables). The multivariogram Vj of X is then calculated using the master equation20: 

 
𝑉𝑉���� � 1
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���
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(subscript t is the transpose operator), N is the total number of increments (i.e., samples) collected, j the process lag parameter, 
and M a metric (positive definite p x p matrix) defined as the inverse of the variance-covariance matrix of X. M corresponds to the 
Mahalanobis distance (MD), which defines the "distances" between the units, i.e., the relationship between the variables, takes into 
account the correlation in the data35,36 and is considered to be adapted to multivariate variography as opposed to the Euclidean 
metric for which the multivariogram would only be the sum of the univariate variogram of each individual variable20,34. The multivar-
iogram can thus be used to summarize the overall spatial (or temporal) variability of data from a set of variables in one structural 
function and thus highlight the spatial (or temporal) structures that are common to these variables20. 
 

The added value of multivariate variographic approaches for geometallurgy sampling 
Alas, there has been limited amounts of publication on multivariate variographic analysis for geometallurgy sampling, most of them 
focusing on process sampling. One of the first study on the topic, applied to industrial residue stream considered for by-product 
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Ramsey and Esbensen (2022) presented this combined TOS-statistics sampling scope in a fully worked-out framework, ready to 
be taken into the sampling realm, including geometallurgy22; the title tells it all: “Inferential statistical sampling of hyper-heterogene-
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scores of application examples in these five exposés. 
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tionary or moving (process) lots. On this basis, a variographic data model allows powerful insight into how well a particular sampling 
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elling is enormously powerful and comprehensive – indeed it has only one negative to it, it is manifestly only univariate. Only! 

TOS and multivariate variographic analysis 
Although, the need for TOS to enter the multivariate realm was already exposed at WCSB229, application of TOS so far have been 
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referred to as variogram (t-score), offer the advantage of combining a variable reduction procedure that describes the correlation 
between all the variables involved in the multivariate data and which highlights the hidden structures and spatial (or temporal) 
patterns through variables grouping (the PCA) to a procedure that characterises autocorrelations within an ordered dataset, the 
variogram31. Alternatively, a ‘reverse’ approach, referred to as PCA (variograms), consists in applying PCA analysis on individual 
variograms for each variable, which allows to conduct similar data analytical interpretations and results, but with the benefits of 
knowing the individual variability characteristics of each individual variables32,33. Application of this complementary ‘dual’ approach 
has to be guided by the specifics of a particular context22-25. 

Another approach, derived from the world of geostatistics, which recently was introduced to the realm of TOS (WCSB7) is the 
multivariate variogram, also referred to multivariogram34. In multivariate variographics, each measured variable xi (e.g., chemical 
analytes, physical properties) is considered collectively as one multivariate dataset and combined in one vector, X, with p elements 
(the p individual variables). The multivariogram Vj of X is then calculated using the master equation20: 
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The added value of multivariate variographic approaches for geometallurgy sampling 
Alas, there has been limited amounts of publication on multivariate variographic analysis for geometallurgy sampling, most of them 
focusing on process sampling. One of the first study on the topic, applied to industrial residue stream considered for by-product 
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metal recovery37, applied and combined the above-mentioned multivariate approaches on a set of 8 variables (Figure 1). These 
variables reflects critical properties of the residue with regards to the design of a by-product recovery process38,39 and are also used 
in in the establishment of a geometallurgy model40. The use of the multivariogram allowed to assess the true global variance of the 
sampling error and thus design the optimal sampling protocol with respect to all the variables of interest. However, the estimated 
global variance with this approach is very high. This mean that designing a sampling campaign, and defining the number of incre-
ments to be samples, based on the multivariogram would lead to (unrealistically) large number of increments to be sampled to 
obtain a reasonable sampling variation. To overcome this issue the authors proposed to combine the multivariogram with PCA 
analysis by computing the multivariogram of the first PCs' scores. This allows to reduce the influence of noisy data and thus reduces 
the overall sampling variance. 

 

Figure 1. Graphical abstract illustrating the univariate vs multivariate variographic approaches for process sampling ex-
plored in Dehaine et al. (2016)20. 
 

A similar approach was recently tested in water management for process water quality monitoring and environmental purposes41. 
Water quality is indicated by a large number of physico-chemical properties that must be monitored through time. The use of 
multivariate statistics allow to reducing the number of monitor charts needed, increase the signal to noise ratio while taking into 
consideration all properties and their correlation42. Therefore, the authors tested the use of multivariate approach to design sampling 
procedure for water quality control. The multivariate variographic analysis revealed the hidden cyclic variation through its ability to 
summarize the time variations and the correlation between multiple variables that were not visible through the classical univariate 
variogram approach. Similarly, to the previous case study20, the number of increments recommended by the global multivariogram 
is impractically high, but can be reduced by combining PCA to the mutivariogram. This study highlights the benefits of using multi-
variate variography to improve water sampling procedures in the mining industry and to reduce both operational and environmental 
risks associated with water quality variability.  

However, despite the reduction in global sampling variance through the use of PCA and even when choosing the properties of 
interest carefully, the resulting global variance obtained with the multivariogram may remain very high. In particular, some variables 
that contribute to a major proportion of the global (multivariate) variability could be less important for the process performance than 
others having a lower variability. Indeed, when sampling for geometallurgy testing, the sample can be considered as being repre-
sentative when it results in acceptable levels of bias and precision for the outcome of test meaning the metallurgical performance 
index.  

To address this issue, a new approach has been proposed at WCSB8, combining the multivariogram with process modelling 
and multivariate data analysis methods such as partial least squares (PLS) regression43. The approach was tested on industrial 
kaolin plant using sensor data as key process variables and a predictive process performance model based on PLS regression 
(Figure 2). The study showed that the PLS model regression coefficients can be used to weigh the variables according to their 
relevance for the process in a weighted metric to design an optimised sampling procedure in terms of frequency, sampling mode 
and number of increments according to the actual overall process performance. This approach has potentially many applications in 
geometallurgy as it would allow to tailor the metric used in the multivariogram according to the objective of the metallurgical test 
using existing physical or experimental models (Multiple Linear Regression, PLS, Design of Experiments). This would therefore 
allow to increase the representativeness of geometallurgy samples and decrease the risks associated with metallurgical perfor-
mance variability. 



Q. Dehaine and K.H. Esbensen, Proceedings of WCSB10: TOS Forum Issue 11, 411–417 (2022)	 415

  

  

 

Figure 2. Graphical abstract illustrating the combined PLS-multivariate variographic approaches for process sampling 
explored in Dehaine et al. (2017)43. 

Discussion and conclusion 
The examples described above show the strong benefits stemming from acknowledging that material heterogeneity as well as 
process heterogeneity is inherently multivariate in nature.    

Acknowledging the multivariate nature of mineralisation and orebody heterogeneity, and the complex interactions involved in 
plant performance as well as the mining operation influence over the entire LOM, is at the essence of geometallurgy. It is therefore 
essential to reap the benefits from starting to integrate the multivariate scope during the design of geometallurgy sampling cam-
paigns and not only for process sampling. But there is a long way to go, and much to be learned by all parties. It is certainly not just 
a matter of applying multivariate data analysis to any multi-variable, or multi-parameter assemblage encountered; there is an on-
going need for geological/mineralogical/geochemistry knowledge to support the multivariate scope. It is likely that the basic univari-
ate scope will always be needed for fully comprehensive geometallurgy. 

So, while only in its first stages within many geoscience fields, we predict an increasing role for the multivariate approach to 
almost all technological fields and application areas in which sampling plays a role. There is powerful insight to be gained by properly 
applied univariate variographic in technology and industry, e.g., see the many examples in Engström, K.: “Sampling in Iron Ore 
Operations – Evaluation and Optimisation of Sampling Systems To Reduce Total Measurement Variability”44 - and there is disruptive 
power in transgressing to a true multivariate scope41,43. 
 
Call to action 
The multivariate approach has been described in adequate depth above – to present our main errand: This WCSB10 presentation 
is an invitation to all parties who would take an interest in venturing outside the conventional univariate box. An invitation to 
collaboration for pushing the envelope of sampling also into the multivariate realm … You are invited – you are welcome!  
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