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This paper returns to Gy’s work to make a recapitulation of his derivation of the constitutional and dis-
tributional heterogeneity of a particulate material with a careful delineation of the assumptions that he 
employed to arrive at expressions for the fundamental sampling variance and the variance due to dis-
tributional heterogeneity or the grouping and segregation variance.  Gy derives a link between the 
constitutional and distributional heterogeneity based on the assumption that increments are ‘similar’.  
This in fact requires that potential increments contain the same number of particles which is very re-
strictive.  Gy’s expressions are explored with numerical examples which demonstrate that these may 
be valid only under limited circumstances.  The second part of the paper provides a derivation that 
presents an alternative approach to the variance of sampling of a highly segregated particulate mate-
rial.  It is shown that when all particles have the same mass as can be expected under Gy’s assump-
tions, the new expression coincides with Gy’s.  The new derivation is essentially free of assumptions 
regarding particle numbers and masses in increments and appeals to common sense regarding the 
extraction of samples by mechanically correct samplers.  The new approach provides an expression 
for the variance due to grouping and segregation which involves the properties of the particulate ma-
terial and the same variable used by Gy to expresses the extent of segregation of the lot.  The group-
ing factor  used by Gy is eliminated from consideration. 

Editor’s ingress: Regrettably, this paper could not be presented either orally or on-line at WCSB10. It has, 
therefore, not been subjected to the open scientific discussion which is customary in academe, but only to a 
closed proxy through reviews and rebuttals via the Editor’s desk. This paper deserves more, however, not 
least because of the author’s career-long contributions to the science and technology of sampling. The Editor 
has, therefore, decided to call for a public discussion as part of the next regular issue of TOS Forum. Readers 
of this ingress may consider themselves invited; more information and directions will be forthcoming on the 
homepage of the International Pierre Gy Sampling Association (https://intsamp.org), or e-mail the Editor with 
your comments (khe.consult@gmail.com). 

Introduction 
The understanding of sampling uncertainty due to particle grouping and segregation is a long-standing issue in particulate 
sampling theory.  The derivation by Gy is complex indeed and not made easier due to the volume of notation that must be 
used  to arrive at a result.  The issue starts with Gy’s analysis of distributional heterogeneity and then follows on to his 
discussion of the selection variances; no easy study to digest.  Few seem to have done so. 
To understand Gy’s definitions of distributional heterogeneity, it is necessary to go back to his development in Chapter 19 
of his book of 1982 or equivalent expositions.  It can be shown that there are assumptions made which limit the magnitude 
of the distributional heterogeneity and so subsequent variances such as the grouping and segregation variance.  These 
assumptions are also necessary to arrive at Gy’s link between constitutional and distributional heterogeneity 
After a comprehensive review of Gy’s derivation of the fundamental and grouping and segregation variances, an alternative 
approach to deriving a variance due to particle segregation is presented herein based on the concept of correct extraction 
of constant volume increments.  The new result is the same as Gy’s result when assumptions regarding increment masses 
and particle numbers as suggested by Gy are invoked.  This new approach provides considerable insight into the challenge 
of describing sampling variance due to segregation. 

Gy’s Notation and Assumptions 
While this is repetitive of Gy’s section 19.1 [1], it is necessary to define and appreciate the basis of Gy’s arguments and 
derivations.  Italics have been used to identify terms that have a specific meaning.  Summation indices have been changed 
in line with usual mathematical usage and additional subscripts added to ensure that a variable is uniquely defined.  There 
is little alternative to such a complex notation. 
The lot is defined as a set of units  ; 1, ,i UU i N  such as  

 the set FL  of fragments  ; 1, ,i FF i N  where FN  is the number of fragments in the lot 

 the set GL  of groups  ; 1, ,j GG j N  of fragments in the lot which are complementary (no overlap or intersection) 
The groups may be though of as the potential increments that can be taken from the lot. 

It is assumed that all groups have about the same magnitude, the definition of the magnitude is not made clear until later. 
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L  A lot of particulate material having a mass 
LM ., containing a mass of critical analyte (CA) LA  with La  the criti-

cal content (concentration, CC) 
IF  A fragment belonging to L having a mass 

iFM , a mass of CA 
iFA  with a CC 

iFa ;  1, , Fi N  

IU  A non-specified unit belonging to L containing a mass 
iUM , a mass of CA 

iUA  with CC 
iUa ;  1, , Ui N    

jG  A group of fragments belonging to L each containing a mass 
jGM , a mass of CA jGA  with a CC jGa ; 

 1, , Gj N   

jG iF  A fragment belonging to jG  with mass jFG iM  with a mass of CA jFG iA  and with a CC jFG ia ;  1, ,
jGi N  

 
Material balances dictate that the following relationships hold 

   
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1 1 1 1
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NNN N

FG iG F
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L

FG FG i
ii j i

AA A
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  (3) 

The assumption that the groups are of ‘similar magnitude’ is a strong one.  Gy1 makes reference to the material of Chapter 
16 which is concerned with increment delimitation and is clearly oriented to sampling as in ‘stopped belt’ sampling or sam-
pling from a one-dimensional moving stream.  In such a case, unless the mass per unit length of the lot varies substantially, 
the increments are of similar volume.  When a tool is used to collect an increment in a correct manner, the increments will 
tend to be of similar volume as well.  Sampling with an auger or taking a drill core creates increments of similar volume. 

If magnitude relates to similar number of particles in each group, then all groups must have similar size distributions.  
Similar masses for the groups suggests a similar mean density.  Similar composition is not a restriction to make as this 
defeats the analysis where differences in composition are being sought.  

Gy further defines average properties of the groups. 
 

F  The average fragment belonging to L having a mass FM , a mass of CA FA  with a CC Fa .  Note that the 
average is a number average. 

The average mass of a fragment must be  L
F

F

MM
N  

The average CA must be  L
F

F

AA
N   

The average CC must be  F L
F

LF

A Aa
M M   

G  The average group belonging to L each containing a mass GM , a mass of CA GA   with a CC Ga  

The average mass of a group is  L
G

G

MM
N  

The average CA must be  L
G

G

AA
N  

The average CC must be   G L
LG

LG

A Aa a
M M  

jG
F

 
The average fragment belonging to jG  with mass 

jFGM  with a mass of CA 
jFGA  with a CC 

jFGa ;  1, , Gj N  

The average mass of a fragment in the j group is  j

j

j

G
FG

G

M
M

N  

The average CA of a fragment in the jth group is  j

j

j

G
FG

G

A
A

N  

The average CC of a fragment in the jth group is   j j

jj

jj

FG G
GFG

GFG

A A
a a

M M  
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So we have a situation where the groups can vary in composition, but their average composition must be that of the lot.  

We must think of the groups as having a statistical distribution of composition about the average composition of the lot.  
Next, the definition of heterogeneity needs to be considered.  Gy defines the heterogeneity carried by a particle as the 

difference between the analyte content of the particle and the lot weighted by the particle mass and then divided by the 
analyte mass in the average particle of the lot, so 

          
   i i i i i i i iF L F F L F F L F F F L F

i
L L LF F F

L
F

a a M a a M a a M N a a M
h MA a M a Ma

N

  (4) 

He defines the heterogeneity carried by the ith fragment in the jth group in an analogous manner 

    
 j j j j

j

FG i L FG i F FG i L FG i

FG i
L LF F

a a M N a a M
h

a M a M
  (5) 

The next question is the heterogeneity carried by the average fragment within the jth group.  This is defined as  

     


    j j j

jj j j

j

LFG FG GF F
L G LFG FG FG

L L L L GF F

a a M MN Nh a a M a a
a M a M a M N

  (6) 

Gy now considers the average of the heterogeneity carried by the ith fragment in the jth group and this is 

 
   

 
    

  
   

1 1 1 1

1 1 1G G G Gj j j j

j j j j j j

j j j

N N N N
F F
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  (7) 

But the first sum on the right is the mass of analyte in the jth group which is j jG Ga M  and the second sum is the mass of 

the jth group jGM  so 

 


  
1

1 1Gj

j j j j

j j

N
F

FG i G L G FG
iG G L L

Nh a a M h
N N a M

  (8) 

which means that heterogeneity carried by the average particle of the jth group is the numerical average of the heterogene-
ities carried by the fragments in the jth group.  So the heterogeneities can be averaged numerically as they relate to masses 
of analyte and masses of particles unlike particle compositions. 

The heterogeneity carried by a group of particles is defined as 

   


  j j

j j j

G L G G
G G L G

L LG G

a a M Nh a a M
a M a M

  (9) 

Gy then makes a comparison between the heterogeneity carried by the jth group, jGh  and that carried by the average 

particle of the group, jFGh .  From (6) and (9) we have  

   j

jj

j

GF
G LFG

L L G

MNh a a
a M N

  (10) 

and  

  
j j j

G
G G L G

L L

Nh a a M
a M

  (11) 

so if  


j

F
G

G

N N
N

  (12) 

these heterogeneities are equal.  This requires that all groups have the same number of particles 


j

F
G

G

N
N

N

  (13) 

The constitutional heterogeneity of the lot, LCH  is now defined as the variance of the heterogeneity carried by the frag-
ments of the lot.  Since the expected value of the heterogeneity is zero, 
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This is a particle mass squared weighted second moment of the particle compositions about the mean composition of the 
lot.  Noting that  

i iF L Fa a M  is the excess/deficit mass of analyte from the mean composition, the summation is total of 

this excess/deficit squared and the sum vanishes only if all particles have the same analyte content.  It is easy to visualise 
a probability density function for  

i iF L Fa a M  which straddles the origin.  The sum above divided by the number of frag-

ments is the variance of this density function which is discrete for a finite number of particles.  Note that LCH  is a very 
large number in general as it is proportional to the number of particles in the lot; it is an extensive (depends on lot mass) 
rather than intensive (independent of lot mass) property of the lot. 

We note here that Pitard2 defines a practical measure of the heterogeneity of the lot by multiplying LCH  by the average 
mass of a fragment.  The quantity was also recognised by Gy as the ‘invariant of heterogeneity’, hence the notation ‘IH’.  
Pitard writes 



 
   

 


2
2

1

1 F
i

i

N
F LL

L L F
iF L L

a aMIH CH M
N M a

  (15) 

which has units of mass but is an intrinsic property of the lot.  The ith fragment mass can be characterised by a volume iv  
and density  i , 

iF i iM v  and 
iF LM M  is the mass fraction ix  of the particle in the lot, so 




 
  

 


2

1

F
i

N
F L

L i i i
i L

a a
IH x v

a

  (16) 

The distributional heterogeneity 
LDH  is defined as the variance of the heterogeneities 

jGh  carried by the groups jG  in 

the lot. 
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Gy makes a comparison of 
LDH  and 

LCH  under the assumption that all groups are ‘similar’ and contain essentially the 

same number of fragments.  However, if the groups are not so constrained, then we could choose the groups in any rea-
sonable way.  One such choice of groups is to put every particle into its own group.  Then 

   


  
2

2 2
2 2

1

F

j j j

N
F

L G F L F
jL L

NDH h a a M
a M

  (18) 

and this is just 
LCH .  But the only similarity between the groups is that they contain one particle and with a size distribution, 

it is not really true that the groups are similar, certainly not in regard to their mass.  Note also that the sampling has been 
carried out by number.  The value of 

LDH  like 
LCH  is a large number due to the proportionality to the number of frag-

ments in the lot. 
To conclude the analysis of DH according to Gy, we follow his analysis of section 19.3.4.  It is possible to write that 

   
   j ji i

j

F FG i L FG iF F L F
i FG i

L L L L

N a a MN a a M
h h

a M a M
  (19) 

as each term corresponds to a analyte content of a fragment and a mass of a fragment and both are defined over the full 
set of fragments in the lot. 

One may then introduce an expression or identity 

    
j j j ji FG i FG i G Gh h h h h   (20) 

If we then square both sides and sum, we have 
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Let us examine the middle term.  We write 
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Then the term in brackets is 
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and if the number of particles in all groups is  for all
j

F
G

G

NN j
N

, the term vanishes but not otherwise.  If it does not vanish 

we have 
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The middle term can have negative and positive terms depending on the number of particles in the jth group being higher 
or lower than a mean value of 

F GN N .  If the groups all contain the same number of particles, we have 
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and dividing by 
FN   
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and again, if all groups are the same size or (12) holds, 

 
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and regardless of the first term on the right, which is always positive, shows that L LDH CH .  Gy states that the first term 

is the average constitutional heterogeneity of the groups. 
So the magnitude of the DH is capped by the constitutional heterogeneity when all groups have the same number of 

particles which, as stated above, precludes the groups having significantly different size distributions and being of similar 
mass or volume as they would be if the groups correspond to correctly extracted increments from a moving stream or a 
static zero- or one-dimensional lot.  The same cap may also exist depending on the behaviour of the terms that don’t vanish 
when groups don’t have the same number of particles. 

Segregation by size is perhaps the first and most obvious type of particle segregation that is encountered. 
Following Gy further, he defines the grouping factor,   as 



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

1 ; 1
1

F G F
G

G G

N N N N
N N

  (28) 

and this is of the order of the number of particles in a group which can be envisioned as the number of particles in a potential 
increment, the groups corresponding to potential increments within the lot.  This number is potentially HUGE.  Gy suggests 
that the minimal DH is given by 




min 1
L

L
CHDH   (29) 

which means that it is potentially zero.  The maximal DH is of course the CH.  He states that this maximum is achieved 
when the composition of all groups is homogeneous.  This can be achieved, as previously deduced, when each group 
contains only one particle or when all particles in a group carry the same critical analyte concentration.  He suggests that 
the maximal distributional heterogeneity can be achieved when, simultaneously 

 the material under scrutiny is perfectly liberated (all particles consist of a single mineral phase) 
 the various minerals are perfectly segregated  
 the particles are grouped according to their mineral composition 
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Then the term in brackets is 
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and if the number of particles in all groups is  for all
j

F
G

G

NN j
N

, the term vanishes but not otherwise.  If it does not vanish 

we have 
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The middle term can have negative and positive terms depending on the number of particles in the jth group being higher 
or lower than a mean value of 

F GN N .  If the groups all contain the same number of particles, we have 
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and dividing by 
FN   
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and again, if all groups are the same size or (12) holds, 
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and regardless of the first term on the right, which is always positive, shows that L LDH CH .  Gy states that the first term 

is the average constitutional heterogeneity of the groups. 
So the magnitude of the DH is capped by the constitutional heterogeneity when all groups have the same number of 

particles which, as stated above, precludes the groups having significantly different size distributions and being of similar 
mass or volume as they would be if the groups correspond to correctly extracted increments from a moving stream or a 
static zero- or one-dimensional lot.  The same cap may also exist depending on the behaviour of the terms that don’t vanish 
when groups don’t have the same number of particles. 

Segregation by size is perhaps the first and most obvious type of particle segregation that is encountered. 
Following Gy further, he defines the grouping factor,   as 




   


1 ; 1
1

F G F
G

G G

N N N N
N N

  (28) 

and this is of the order of the number of particles in a group which can be envisioned as the number of particles in a potential 
increment, the groups corresponding to potential increments within the lot.  This number is potentially HUGE.  Gy suggests 
that the minimal DH is given by 




min 1
L

L
CHDH   (29) 

which means that it is potentially zero.  The maximal DH is of course the CH.  He states that this maximum is achieved 
when the composition of all groups is homogeneous.  This can be achieved, as previously deduced, when each group 
contains only one particle or when all particles in a group carry the same critical analyte concentration.  He suggests that 
the maximal distributional heterogeneity can be achieved when, simultaneously 

 the material under scrutiny is perfectly liberated (all particles consist of a single mineral phase) 
 the various minerals are perfectly segregated  
 the particles are grouped according to their mineral composition 
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and the groups carry the same number of particles, so that the relationship developed between DH and CH is valid. 
Let us go back to the original definition of the distributional heterogeneity 
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and that for the constitutional heterogeneity 
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and do some arithmetic with some simple cases. 
A good case is a binary mixture of two minerals with different densities and different particle sizes.  The two minerals are 

segregated and grouped.  The DH is then calculated as 
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Let’s take the case in Table 1 and carry out a calculation.  Further, we can vary the number of particles of the Phase 1 
and see what happens to the values of the CH and DH.  For the conditions in the table the calculation follows. 
 
Table 1.  Heterogeneity Calculation Example (particles are all taken to be cubes) 

Phase 1 Value Unit 
density 5 g/cm3 
size 1 cm 
analyte conc 0.3  
number of particles 50  
particle mass 5 g 
group mass 250 g 
   
Phase 2   
density 2.6 g/cm3 
size 2 cm 
analyte conc 0.075  
number of particles 20  
particle mass 20.8 g 
group mass 416 g 
   
Lot   
total particles 70  
analyte conc 0.159  
total mass 666 g 
DH   
from Phase 1 0.1095  
from Phase 2 0.1095  
total 0.4378  
CH   
from Phase 1 0.002189  
from Phase 2 0.005473  
total 0.5363  
ratio DH/CH 0.816  
gamma 68  

 

 

                  
        
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0.159 666 0.159 666
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DH
  (34) 

 
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2 2
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70 .002189 0.005473 0.5363
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  (35) 

The calculations carried out for a range of particle numbers in Phase 1 are plotted in Figure 1.  When there are 20 particles 
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in each phase, the DH is indeed equal to the CH and because we have segregated according to phase and the groups are 
homogeneous, we have maximal DH in that the DH equals the CH. 
 

 

Figure 1.  Variation of 
LDH  and 

LCH  for the mixture considered in Table 1, with additional variation of the num-
ber of particles in Phase 1. 

A case of some interest to gold miners and processors is one in which we have relatively fine gold mixed with barren 
solids of a larger size.  Consider 50 micron gold mixed with 150 micron barren material taken to have a density 2.6 g cm-3.  
The particles will be taken to have a shape factor of 0.5.  For 250 gold particles in a nominal 30 g sample, the grade is 9.67 
g/t and there are  67 10  barren particles.  The DH and CH are calculated as follows. 
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We see in this case that the DH is very small compared to the CH and that the magnitude of CH is governed largely by 
the gold phase.  Note that here also we have two groups of liberated material but the DH is very small compared to the CH.  
There is clearly more to this issue of constitutional and distributional heterogeneity than is apparent at first glance. 

To complete Gy’s linking of the DH and CH, we consider his definition of a segregation factor,  , as 
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  (38) 

He states that  0 1 with the maximal value applying when the material is perfectly segregated.  In the case of the 
gold example, using   as given by (28), we have    2FN   as we have two groups 
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  (39) 

and since 
FN  is very large, 

L LDH CH   (40) 
and the two groups are liberated and separate, so we would expect   1, but 

LDH  is very small. 

It must be emphasised at this point that Gy’s analysis corresponds to what is referred to in the statistical literature as a 
non-parametric analysis.  He has made no assumptions in regard to the statistical distribution of particle grades or sizes, 
except insofar as he has considered the choice of groups that are homogeneous.  It may be that to progress further, it will 
be necessary to bring in some statistical distribution concepts. 

Chapter 20 of Gy1 is concerned with the development of the discrete selection model.  This chapter is rather heavy-going 
but what can be taken away from the development is that the final results are based on particles and units being selected 
with a uniform probability.  Gy states at 20.5.2 that for ‘correct’ sampling, the expected mass of a sample is P times the 
mass of the lot, where P is the selection probability.  This uniformity of mass makes the samples very similar.   

The development leads to the conclusion that the selection of particles leads to the sampling variance being related to the 
CH of the material and selection of groups leads to the sampling variance being related to the DH.  But it must be recalled 
that the CH to DH link is predicated by groups containing the same numbers of particles.  This is a substantial assumption 
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but seems to be valid under the definition of correct sampling if the material is not substantially segregated.  The final result 
of the development is the definition of the variance due to DH being related to the variance due to CH by the relationship 

 2 2
GE FE

  (41) 
where we recall that the value of the grouping factor   is of order of the number of particles in a group, allowing the variance 
due to grouping to be much larger than the variance due to the fundamental error.  However we note from Pitard3 that the 
experience of Gy was that the product   tended to be about unity, so that the fundamental variance plus the grouping 

and segregation variance is double the fundamental variance. 

An Alternative Approach to Quantifying Distributional Heterogeneity 
Gy makes considerable appeal to the mechanically correct sampling of particulate materials from a flowing stream or sta-
tionary lot, be it zero- or one-dimensional.  In this he considers the use of a sampling tool that can be used to define potential 
increments from the lot.  In the case of a flowing stream, we have the cross-stream sampler which effectively cuts a swath 
of material from the conveyor belt as the solids fall off the end of the belt.  One can also consider the fundamental concept 
of stopped belt sampling off a conveyor or ‘ribbon’ sampling from a lot that has been spread out in a linear manner on a 
surface with a more or less constant mass per unit length. 

While we usually consider the mass flow along a belt, it is also relevant to consider the volumetric flow along a conveyor 
belt.  If the flow is coming from a feeder that has a device shaping the flow on the belt such as a gate at the outlet of a 
feeder from a bin, the flow will tend to be a constant volume flow and the sampling tool will cut a specific volume from the 
flow as an increment.  This is certainly true in stopped belt sampling. 

Gy’s sampling theory has some significant constraints under it, as illustrated by the assumptions needed to connect CH 
and DH.  It is possible to remove the constraints if we will admit to a parametric development of sampling theory.  The 
author4,5 has made such a development that is in agreement with Gy’s result for the fundamental sampling variance (error).  
This alternative development is based on the concept that when a well-mixed heterogeneous material is sampled in a zero- 
or one-dimensional manner, the number of particles of any one type that arrive in an increment follows a Poisson distribution 
with an expected value derived from the properties of the lot.  With the concept of the material being laid out on a conveyor 
belt and flowing at a constant mass flow rate, this assumption corresponds to the particles of any one type being placed on 
the belt in a totally random manner without spatial constraints.  Their time of arrival at the end of the belt is a Poisson 
process.  This situation clearly corresponds to Gy’s selection of particles by number.  We find that the fundamental sam-
pling variance based on this conceptualisation agrees exactly with Gy’s results.  The new approach allows sampling theory 
to be taken further because we can use the properties of the Poisson distribution to calculate the full sampling distribution 
for a material if the size and composition distributions of the particles are known or can be reasonably assigned. 

So perhaps it is legitimate to explore a variation of this conceptualisation of correct sampling that led to agreement with 
Gy’s work.  In the same way as Gy’s did, we will consider the potential increments taken from the flow as ‘units’ having 
particular properties. 

So what happens to our sampling scenario when the increments are defined volumetrically?  First of all, their expected 
mass will no longer have to be constant as at more or less constant void fraction, the increment mass will reflect the mean 
density of the particles.  It will also be possible to have increments that have different particle size distributions. 

To explore this issue further, let us imagine sampling a set of groups of particles which have been made up of single 
mineral species.  We will take the mass fraction of the ith particle type in the lot to be 

iz  with a density  i
 and some size 

distribution  ig d .  Consider that the groups are laid out in a row which has a constant width and each particle class 
occupies a length fraction 

iq  in the direction perpendicular to the width of the layout.  One might imagine that these are 

arranged on a conveyor belt so that the depth of each class is the same.   
Next, we have to consider what the bulk density of the sections on the belt might be.  If the particle size distributions were 

all the same, the void fraction on each class would tend to be the same, but the bulk density would be proportional to the 
density of the particles in the class.  With a void fraction  i

 the bulk density for the ith class would be  

    1i i i   (42) 

For unit width and depth of the classes, the fraction of the length occupied by the ith class will be, for a total number of 
classes 
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  (43) 

We can imagine that multiple strips of the classes are laid out in a random order so that there are many strips of the 
classes along the belt. 

Now, if this belt were moving and we were to carry out a ‘sampling experiment’ taking a finite number, N, of small incre-
ments at random points in time, the number of times a given class was collected would follow a multinomial distribution.  
We will simplify the situation a bit by taking the probability of interception of increments consisting of adjacent particle classes 
to be zero.  This could be taken into account, but this simplifying assumption makes the results easier to see.  With small 
increments, the probability of intercepting more than one particle type is reduced.   
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The sampling tool will be taken to collect equal volumes of particles into each increment; this is analogous to ‘stopped 
belt’ sampling of a flow on a conveyor with a constant bed depth.  The increment volume can be taken to be a volume  .  
The mass of this increment is then i

 so it carries a mass of target analyte of  i ia  where 
ia  is the mass fraction of the 

target analyte in the ith class. 
The number of times that the ith class is ‘hit’, 

iR , is a multinomial random variable.  Denoting the number of hits on the 
ith class in one realisation of the sampling experiment as 

ir , the sample composition for the experiment is, 

 

 









1

1

T

T

M

i i i
i

S M

j j
j

a r
a

r
  (44) 

The expected value of 
iR  is 

iNq  when the number of increments taken is N.  The expected value of the sample assay 

is then 
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 (45) 

so the sampling is unbiased to a first approximation.  Note that when reference is made to a random variable, an upper 
case letter is used to denote the random variable and the corresponding lower case letter is used denote a realisation of 
that random variable. 

To find the variance of the sample analyte content, the usual rule of propagation of variance is used so that 
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From the properties of the multinomial distribution, the variance of 
iR  is 

    var 1i i iR Nq q   (47) 

and the covariance between the number of hits is  
   cov ,i j i jR R Nq q   (48) 

The partial derivatives evaluated at the expected values of the number of hits can be shown to be 
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and 
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is the bulk specific volume of the solids (bulk volume of unit mass of solids mixture).  The variance is then 
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We write the last term as 
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The first term on the right can be split as  
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Each of the sums equate to zero. 
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Then 
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This result shows that the variance due to small scale particulate heterogeneity does not depend on particle masses (or 
volumes) in the same way as the fundamental sampling variance of the sampled material and that the variance is inversely 
proportional to the number of increments collected which corresponds to Gy’s statement that taking lots of small increments 
is the way to defeat the variance due to grouping and segregation.  Note also that if all the class bulk densities are similar 
then   1V  and 
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  (55) 

So now, what about the particle number dependence of the grouping factor  ?  Another way to write the fundamental 
sampling variance defined by Gy is  
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  (56) 

where 
iv  is the typical fragment volume in the ith particle class and 

SM  is the sample mass.  This is Gy’s result for the 

case of the lot mass much larger than the sample mass.  So from (41), 
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  (57) 

where 
PIN  is the number of particles in a group (potential increment).  Now, as the particle volumes go down, the number 

of particles in our ‘groups’ goes up, but this is appropriately balanced by the volume factor in the above expression for the 
fundamental sampling variance; volume down, numbers up.  So as  2

FE
 goes down with decreasing particle volume, the 

number of particles goes up in inverse proportion to the volumes and we have a balance which might just come out close to 
the result in (54) or (55).  Some simple exploration is appropriate. 

Consider a very simple case in which all particles have the same mass, m , but differing analyte contents.  In such a 
case, the grouping and segregation variance can be written as 
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But, with 
PIN  the number of particles in an increment, PI ImN m , the mean mass of an increment, so  
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making 
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To the extent of the simplification, the new relationship is in agreement with Gy’s.  Certainly, the order of magnitude is 
correct, and we recall that Gy assumed his increments were ‘similar’ and having similar numbers of particles in each ‘group’ 
or potential increment. 

From a practical point of view, there is a need to be able to gauge the possible magnitude of grouping and segregation 
variance arising from DH compared to the fundamental sampling variance that is governed by CH.  On the one hand, we 
have the relative variance due to constitutional or intrinsic heterogeneity (IH) given by  
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which can be written in terms of the sampling constant 
SK  
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as 
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On the other hand 
 




 
  

 


2

2
1

var TN
GE S i L

i i
iL L

A a aV z
a N a

  (64) 

for which we can define 
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If we form the ratio of the variances and apply the segregation factor, we have 










2

varGE S S

FE S

S
inc

S

M D
N K

Dm
K

  (66) 

where 
incm  is the increment mass that is used to collect a total sample mass, 

SM .  We can also make the point that the 

sample mass collected will in practical terms be large enough to make the relative standard deviation due to IH somewhere 
around 2% or 0.02, so   44 10S SK M  and then 
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Now, for the first example above with the values in Table 1 and zero voidage, we find  0.603SD .  If we were to take 

say 50 increments in forming the sample, the ratio becomes 
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This suggests that for the grouping and segregation variance to be comparable to the variance due to IH,   must be 

quite small.  If it is not, the variance due to grouping and segregation will be larger than that due to IH.  It is possible to 
calculate the value of the sampling constant for this material which comes out to 5.1 g.  The sample mass to provide a 2% 
relative error is then 12.8 kg.  The particles are 10 and 20 mm cubes and both phases carry significant analyte concentra-
tions.   

Moving to the second example with the fine gold, if we do the same calculations, the value of 
SD  is very large due to the 

low grade;  755986SD .  The sampling constant is  0.123SK  g.  The sample mass that would be used to confine the 

relative standard deviation to 2% is 308 g.  The variance ratio is now, having taken 50 increments 
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This result suggests that the propensity for the gold ore to segregate is enormously greater than the simple material of 
example 1.  We might conclude that materials containing a small quantity of a liberated high-grade phase is much easier 
to segregate than some other type of material and consequently also impossible to mix to a condition of particulate homo-
geneity. 

Discussion 
Could this be a step towards better understanding and quantifying the grouping and segregation variance?  We have the 
segregation factor,  , left with which we can adjust to move from particulate homogeneity to total segregation.  But we 

have defined a maximal value of the grouping and segregation variance for total segregation that derives from consideration 
of sampling with increments of equal volume which is almost exactly true in mechanically correct sampling.   

Size distribution effects can be taken into account with the introduction of a voidage factor for each particle class.  The 
problem of dealing with the seemingly unmanageable number of particles in the increment has been more or less eliminated 
but finding a means of determining the segregation factor remains.  This issue is akin to the issue that arose with the 
liberation factor before it was concluded that it was a concept that was hard to deal with and could in any event be removed 
when the size distribution of the target phase(s), liberated or not, could be estimated3,4,5. 

Maybe this is what Gy had in mind; we shall not know as sadly he has passed away without further clarification of these 
concepts which are quite critical to his integration of sampling theory.  His arguments concerning the grouping and segre-
gation factors are ‘hard work’.  This argument does seem to encapsulate his remarks on segregation in terms of explaining 
the need to take many increments and his statement that the factor   related to particle numbers.  However, it still sug-
gests that the variance can be rather large, but it does provide a mitigation of the dependence of   on the number of 
particles. 

To the author’s knowledge there has been no quantitative analysis made previously in the sampling literature of Gy’s 
development for segregation variance so there is no other literature that has a bearing on the analysis.  We have only 
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Pitard’s publications which follow Gy1 closely.  The author hopes that the step-wise analysis of Gy’s derivation and the 
alternative approach to the derivation of a segregation variance based on the sampling of a mineral mixture by volume, 
which is more or less what happens with correct sampling equipment, will clarify thinking about the segregation variance 
and make the concept clearer to sampling practitioners.  The new derivation does not solve the problem of the practical 
estimation of the sampling variance but illustrates what a state of total segregation is and hopefully permits the sampling 
community to better conceptualise/visualise the spectrum of states of segregation that can exist in practice. 
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