Journal of Spectral Imaging,   Volume 8   Article ID a2   (2019)

Peer reviewed Paper

Increased sensitivity in near infrared hyperspectral imaging by enhanced background noise subtraction

  • Torbjørn Mehl
  • Guro Marie Wyller
  • Ingunn Burud
  • Espen Olsen
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway, Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany and Institute for Energy Technology IFE, Instituttveien 18, 2007 Kjeller, Norway

 https://orcid.org/0000-0001-6452-3052
 Search for papers by this author
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway

 https://orcid.org/0000-0003-0637-4073
 Search for papers by this author
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway

 https://orcid.org/0000-0001-9721-1637
 Search for papers by this author
 Corresponding Author
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway
[email protected]
 https://orcid.org/0000-0001-5766-9520
 Search for papers by this author

Near infrared hyperspectral photoluminescence imaging of crystalline silicon wafers can reveal new knowledge on the spatial distribution and the spectral response of radiative recombination active defects in the material. The hyperspectral camera applied for this imaging technique is subject to background shot noise as well as to oscillating background noise caused by temperature fluctuations in the camera chip. Standard background noise subtraction methods do not compensate for this oscillation. Many of the defects in silicon wafers lead to photoluminescence emissions with intensities that are one order of magnitude lower than the oscillation in the background noise level. These weak signals are therefore not detected. In this work, we demonstrate an enhanced background noise subtraction scheme that accounts for temporal oscillations as well as spatial differences in the background noise. The enhanced scheme drastically increases the sensitivity of the camera and hence allows for detection of weaker signals. Thus, it may be useful to implement the method in all hyperspectral imaging applications studying weak signals.

Keywords: near infrared, hyperspectral imaging, noise subtraction, photovoltaic, crystalline silicon

Metrics

Downloads:

225

Full-Text HTML Views:

29

Abstract Views:

949