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Salmonella is a leading cause of foodborne illness. Traditional detection methods require lengthy incubation periods or expensive reagent kits. 

Hyperspectral microscope images (HMIs) have been previously investigated as a method for early and rapid detection of bacteria by using a spec-

tral signature that is unique to the organism. Previous HMI use with bacteria has consisted of supervised classification with hypercubes collected 

for single culture images isolated from highly selective growth media. In order to move forward with HMI as a detection tool in the food industry, 

unsupervised classification of bacteria cells in mixed culture HMIs was investigated. Four foodborne bacteria cultures, S. Typhimurium (ST) E. coli 

(Ec), S. aureus (Sa) and L. innocua (Li) were combined in seven different culture combinations with HMIs collected between 450 nm and 800 nm. A 

k-means divisive cluster analysis (CA) was implemented and mixed culture image sets were found to contain between two and four clusters. CA 

cluster accuracy was obtained by assigning a dummy variable of the proposed CA classification, then carrying out a discriminant analysis. From the 

mixed culture HMIs, 700 bacteria cells were classified and accuracies were between 91.92% and 100%, with six of the seven HMI sets resulting 

in > 97% accuracies. A distance measure between clusters was applied to identify unknown clusters based on single culture reference samples of 

the four bacteria used. Results showed that the CA has potential for unsupervised classification of bacteria cells, but the distance metric was not 

an adequate method for identifying the unknown cluster based on reference spectra, potentially due to the collinearity amongst bacteria spectra. 

Keywords: foodborne bacteria, hyperspectral microscope images, cluster analysis, discriminant analysis, distance classifier

Introduction
Worldwide, it is estimated that 600 million people 
become ill due to foodborne illness and 230,000 

deaths occur annually.1 Salmonella is a pathogenic 
bacterium that has been associated with foodborne 
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illness around the world. The organism is ubiquitous 
in the environment and can find its way into the 
food system through cross-contamination at stages 
of production, processing or distribution. Significant 
outbreaks have been noted in eggs, peanut butter 
and sprouts.2

Early and rapid detection of harmful microbial 
organisms is critical for several purposes. In the 
case of an outbreak, traditional methods such as the 
use of nutrient-enriched growth media, DNA-based 
methods or immunological detection may take up 
to 10 days for confirmation.3 During this time the 
contaminated product may still be in the market 
causing illness. Early and rapid detection methods 
can offer food chain suppliers with the information 
necessary to prevent contaminated products from 
initially entering the market. Also, early detection of 
microbes in hospital settings could lead to a quicker 
response with targeted antibiotics for a specific infec-
tion-causing organism.

The use of hyperspectral imaging (HSI) and hyper-
spectral microscope imaging for food safety has seen 
some advancement in recent years.4 HSI has been 
investigated as a method of Enterobacteriaceae counts 
on a chicken using PLSR.5 Determination of shiga 
toxin-producing E. coli (STEC) serogroup using HSI 
to identify colonies growing on agar plates has been 
explored by two groups.6,7 At the microscopic level, 
hyperspectral microscope imaging has been used to 
characterise deformed red and white blood cells.8

Our previous hyperspectral microscope imaging 
work has focused on classification of HMIs containing 
pure cultures of one target organism under a micro-
scopic slide.9 In moving forward with a food industry 
application of the HMI method for early and rapid 
detection, it is important to be able to identify target 
species of bacteria from HMIs containing more than 
one species of bacteria. Cluster analysis (CA) has seen 
many uses, including applications by biologists to 
classify various taxonomical species of animals.10 CA 
is an unsupervised classification method that works 
by clustering together similar samples, with sepa-
rate clusters forming for dissimilar samples. Here, the 
objective is to determine if CA can be used to differ-
entiate individual cells in HMIs containing multiple 
bacteria cultures.

Materials and methods
Sample preparation
All bacteria cultures were obtained from the Poultry 
Microbiological Safety and Processing Research Unit 
located at the US National Poultry Research Center in 
Athens, GA, USA. Cultures were isolated from chicken 
broiler carcass rinses, purified and held at –80°C until 
needed. Short-term tryptic soy agar (TSA) slants were 
then prepared by inoculating the frozen cultures of E. coli 
(Ec), Listeria innocua (Li), Staphylococcus aureus (Sa) and 
Salmonella Typhimurium (ST) into TSA slants and incu-
bating overnight at 37 ± 2°C prior to sampling. Samples 
were removed after overnight incubation and stored at 
4°C for up to two weeks for hyperspectral microscope 
imaging data collections. The short-term agar slants were 
streaked onto TSA plates and incubated for 18–24 h at 
37 ± 2°C.

Park et al.11 describe the preparation of microscope 
sample slides for collecting HMIs of live cells. In brief, a 
colony from the TSA plate was picked with an inoculating 
loop and suspended in 100 µL of UV-sterilised water.11 
The suspension was then vortexed briefly. Three µL of 
the suspension was spread onto the centre of a glass 
slide and allowed to air dry for 15 min under a biosafety 
cabinet (Baker, Sanford, ME, USA). A cover slip was then 
applied with 0.8 µL of water, pressing firmly to remove 
any potential air bubbles. One inherent advantage of this 
detection method is sampling live-viable cells without the 
use of added stains or dyes. The common heat fixation 
method was avoided because it would damage the cells. 
The reference set of images was collected in this manner 
with one culture per hyperspectral microscope imaging 
slide. For the mixtures of two, three and four species, 
the same method was used, but 3 µL of each bacteria 
suspension were mixed together and 3 µL of that mixture 
was placed on a glass slide. The mixed culture HMIs were 
combinations of ST with the other three bacteria. HMI 
sets A–C were combinations of two bacteria sets A) = ST 
and Li, B) = ST and Sa, and C) = ST and Ec. Hyperspectral 
microscope imaging sets D–F contain three cultures D) = 
ST, Ec and Sa, E) = ST, Li and Sa, F) = ST, Ec and Li. Finally, 
all four species were combined into the G set of HMIs. 
For the mixed culture HMI sets, these bacteria were 
grown from culture in three repetitions, with three to six 
HMIs collected at each repetition for each A–G.
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Hyperspectral microscope imaging system 
and image acquisition
The hyperspectral microscope imaging system consisted 
of a standard upright digital microscope (Eclipse, e80i, 
Nikon, Lewisville, TX, USA). To this was attached an 
acousto optical-tunable filter (AOTF) (Gooch and 
Housego, Ilminster, UK), with a 16-bit electron multi-
plying charge coupled device (EMCCD) (iXon Andor 
Technology, Belfast, UK) and a 24-W tungsten halogen 
(TH) light source (Ushio America, Cypress, CA, USA). The 
components of the hyperspectral microscope imaging 
system can be seen in Figure 1.

System spectral calibration was performed by collecting 
HMIs with a multi-ion discharge lamp (MIDL) for wave-
length calibration (LightForm Inc., Ashville, NA, USA). 
A linear regression analysis was carried out using five 
distinguishable peaks from the wavelength calibration 
lamp with the exposure time set to 250 ms and with a 
gain of 1.6%, which maintained high signal-to-noise ratio 
for acquiring quality images from the bacterial cells. The 
five peaks from the calibration lamp were found at 486, 
542, 586, 610 and 706 nm. The linear regression yielded 
an R2 value = 1.00, with an equation of:

 ƛi = 446 + 4xi (1)

where the ƛi = wavelength (nm), xi = band number, R2 = 
coefficient of determination. Radiometric calibration was 
carried out with a standard yield lamp for photonic calibra-
tion (SYLPH) (Lightform Inc., Ashville, NC, USA). Spectra 
were consistent with no abnormal peaks or patterns 
observed. The hypercube images for calibration and 
sampling were collected between 450 nm and 800 nm, 
every 4 nm, resulting in images captured at 89 spec-
tral bands. Hypercubes consisted of (1002 × 1002 × 89) 
pixels. Using a micrometer, it was determined that the 
pixel size equals 0.0847 µm2, while single bacterial cells 
have approximately between 100 pixels and 7500 pixels. 
Salmonella usually have 300–500 pixels, Staphylococcus 
have as few as 120, while Listeria have up to 700.

HMI processing
HMIs were converted in the ENVI software program 
(Harris Geospatial, Boulder, CO, USA). Regions of interest 
(ROIs) depicting single cells were extracted in a two-step 
method. First, a spatial ROI was drawn around the cell. 
Then, image intensity thresholds were determined by 
an intensity histogram at the 650 nm peak, which had 
highest scattering intensity from the HMIs. Thresholds 

were then applied to each cell selected in an ROI to 
effectively extract pixels representing the backscatter 
signal from a single cell, while preventing under and over-
saturated pixels from being extracted. From here, a mean 
spectrum was calculated for each bacteria cell. Using the 
mean spectra from each cell, the Mahalanobis distance 
(MD) from each sample to the class mean was calculated 
by:

 ( ) ( ) ( )
0.5

1MD      for 1, ...,T
i i id x x x C x x i n-é ù= = - -ê úë û

=  (2)

where xi is an object vector and x is the centre of the 
cluster. The MD takes into account the distribution of 
objects in the variable space, independent of variable 
scaling.12 Outliers were identified as MD values greater 
than ± 2 standard deviations from the mean MD value.13 
An important assumption of the MD is a normal distri-
bution.14 Here, the MD values representing distances 
from sample to class centroid were found to be normally 
distributed. From a sample size of 1220 cells, only 0.82% 
(10 cells) were identified as outliers and removed from 
the data set. Previous work using HMIs to classify single 
bacteria cells showed that cells identified as spectral 
outliers could be linked to damaged cells extracted from 
the HMIs.15 Upon review of the HMIs these cells were 

Figure 1. Hyperspectral microscope imaging system.
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identified as severely damaged, appearing malformed, 
cleaved or with severely damaged cell walls. In our 
experiment, a total of 10 cells were identified as outliers. 
Here, we can see that the cell’s backscatter pattern is not 
consistent. The ST cell appears divided, while the Sa cell 
is deformed and not a cocci shape, and the unknown cell 
obtained from a mixed culture image is also damaged. 
These inconsistencies most likely contribute to the outlier 
classification (see Supplementary Figure S1).

Data preprocessing
As previously mentioned, prior use of hyperspectral 
microscope imaging for pathogenic bacteria identifica-
tion was conducted with sample slides prepared with one 
bacteria strain per slide. A two-step spectral pretreatment 
method was applied consisting of a normalisation step 
where the single cell mean spectra was normalised to the 
light source spectra at each collected wavelength. This 
was then followed by application of multiplicative scatter 
correction (MSC).16 A slight difference in cell size was 
noticed in the reference sets of Sa, most likely due to the 
differences in minor cell growth size between experiment 
repetitions. Given that these HMIs of Sa were collected 
from the same strain, but grown at different times, a slight 
difference in size is not surprising. In first analysing the 
reference HMIs (single culture), a global piecewise multi-
plicative scatter correction (GPMSC), previously described 
by Burger and Geladi, was applied.13 This was a two-step 
approach applying MSC by class first then globally. Here, 
the GPMSC was effective in removing the influence of 
cell size on the spectra, eliminating the repetition effect in 
intensity for Sa. If the goal of using HMIs is confirmation 
of a microbial isolate where one is fairly certain that there 
is only one organism per HMI, then the GPMSC showed 
promise for removing or reducing the influence of size 
from an organism’s mean spectra. However, if the objec-
tive is to use hyperspectral microscope imaging for differ-
entiation of two or more species in one HMI, then the 
MSC or GPMSC are not effective. Because MSC/GPMSC 
uses a class mean as a reference point to scale sample 
spectra, it will blend the two or more classes together, 
convoluting the resulting classification boundaries when 
a priori knowledge of cell cultures are not known. In order 
to reduce the spatial influence on the single cell mean 
spectra, standard normal variate (SNV) was used in place 
of MSC, and calculated by:

 
  i

i
i

ix mx
s
-

=�  (3)

where ix�  is the SNV adjusted spectra, mi is the sample’s 
mean, si is the sample’s standard deviation and xi is the 
sample’s spectra. These preprocessing steps are similar, 
but offer a subtle difference that is necessary to account 
for the unsupervised classification of mixed cultures 
for HMIs. The SNV does not require a class reference 
spectrum as the MSC does, because SNV subtracts the 
sample mean, and divides by the standard deviation 
for each sample.17 Tungsten halogen light normalised 
spectra show slight rep effects; however, after applying 
SNV, more sample homogeneity from different experi-
ments is observed, and reducing the rep effect on the 
spectra (see Supplementary Figure S2). This step can 
be done when more than one species of bacteria are 
present in an image, without blurring the proceeding 
cluster boundaries.

Multivariate data analysis
Analysis of spectral data was carried out in the 
Unscrambler software V.10.1 (Oslo, Norway). Here, a 
divisive CA is proposed with the objective of identifying 
individual cells at the species level, based on the cell’s 
mean spectra. First, the CA approach was tested with 
a supervised reference data set taken from our spectral 
image library of common foodborne bacteria. Reference 
HMIs contained one culture per HMI for Ec, Li, Sa and 
ST. The four bacteria were grown from culture for either 
two or three repetitions with three total HMIs of each 
species used for the reference data set. Each level of 
the CA was carried out with a two-cluster k-means clus-
tering method, with 50 iterations for cluster assignment, 
using the squared Euclidean as a measure of distance 
and cluster assignment. Intracluster similarity was used 
as a stopping mechanism. For the mixed cluster HMIs, 
a two-cluster k-means CA was performed. From here, 
each of the two clusters formed had another round of 
k-means cluster analysis carried out. If the results came 
back as all or most of the samples belonging to the same 
cluster, then the CA was stopped. Next, the CA method 
developed from the spectral library was applied to the 
HMIs containing a mixture of ST with one, two or three 
other bacteria species. Mean spectra from the unknown 
clusters were then compared to the reference data set, 
which contained single culture HMIs for all four bacteria. 
The “cos a” of the angle between two spectra were calcu-
lated by:

 ( )( )
    

    

T T
A B A B

T T
A BA A B B

x x x xcos
x xx x x x

a = =
´  (4)



M. Eady and B. Park, J. Spectral Imaging 7, a6 (2018) 5

where cos a is the angle a between two vectors and 
xA and xB are the two vectors. Here, xA would be the 
mean spectra spectral library (e.g. either Ec, Li, Sa or ST 
in this study) and xB is the mean spectra of the unknown 
samples. This is a similarity measure with the aim of iden-
tifying the unknown samples as one of the four species, 
based on the largest cos a value between the unknown 
sample’s mean spectra and the reference spectra.16

In an effort to further assess the efficiency of the CA 
to correctly identify single bacteria cells from the mixed 
culture HMIs, a MD-based discriminant analysis (DA) 
was applied. Spectral signatures obtained from bacteria 
cells are inherently multi-collinear. For this reason, the 
MD measure was chosen due to its ability to standardise 
by scaling in terms of standard deviation, and summing 
the pooled within-group variance–covariance, adjusting 
for correlations among variables.10 DA is a supervised 
classification method. A categorical dummy variable was 
inserted into the matrix, containing the proposed CA 
classification result for each cell (i.e., 0, 1, 2 or 3). The 
DA was carried out using the spectra as predictors, and 
the proposed CA classification as the response. DA was 
performed with the first five principal components, which 
explained ≥ 95% of the variance between classes.

Results and discussion
Single culture samples
One experimental repetition of the single culture refer-
ence HMIs is shown in Figure 2. We can see that Sa 
in Figure 2(c) has higher scattering intensities than the 
other three images of rod-shaped bacteria. Cocci also 
have a tendency to cluster together, which can be seen 
in Figure 2(c). In Figure 2(d) the Li cells are more clumped 
together than the other rod images along with the char-
acteristic slightly bent rod shape visible in some cells. The 
Ec (Figure 2a) and ST (Figure 2b) are the most similar, 
with no real discernible visual difference between the 
two. The mean spectra of cells from the reference images 
can be seen in Figure 3. The plot on the left (Figure 3a) 
shows the raw spectra of the four species. Spectra for Ec 
and ST are similar, while the Li and Sa mean spectra are 
not as similar to Ec and ST, which are in the same family 
of bacteria (Enterobacteriaceae) and have a similar short 
rod shape. The plot on the right (Figure 3b) shows the 
preprocessed spectra. We can see that preprocessing 
has brought the mean spectra of all four species closer 

together. This removes intensity variability in the spectra, 
while pattern deviations are present. The Sa spectra 
appear to be the most different from the others with 
changes in both pattern and intensity noticed. Overall, 
as the spectra approach the red colour bands between 
680 nm and 800 nm, we see more variance in the spectral 
patterns.

Given these cells are imaged with a 100× oil objective 
in the visible light range, there are some benefits and 
limitations to what can be discerned from the HMIs. The 
backscatter signal collected from the cells with a 100× 
objective gives us some detail of an individual cell, but not 
the sensitivity to observe how selected pixels may repre-
sent specific cellular characteristics, such as flagellum or 
the actin polymerising tail of Listeria. This does give us an 
overview of the cell. Considering that these HMIs in the 
visible light range describe a generalisation of molecular 
and physical interactions with the tungsten halogen (TH) 
light occurring within a cell, but not necessarily specific 
biochemical processes.

A divisive dendrogram of the reference data set is 
shown in Figure 4. The three levels of clustering can be 
seen. Cellular shape is a deciding factor in the first level 
of the CA, resulting in 100% accuracy. The three rod-

Figure 2. Hyperspectral microscope image bands col-
lected at 650 nm for pure culture images (a) E. coli, (b) S. 
Typhimurium, (c): S. aureus and (d) L. innocua.
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shaped bacteria (Ec, Li and ST) (N = 413) represent one 
cluster, while the cocci (Sa) formed a second cluster alone 
(N = 96). Figure 5 shows the reference spectra for Ec, Li 
and Sa adjusted to ST, by subtracting the ST spectra for 
each. Ec and Li have similar patterns, but it is important 
to note the distinct difference in Sa pattern, showing 
this was the clearest CA cluster separation. From here, 
the second level of the CA differentiated between the 
family level of taxonomy with Enterobacteriaceae and 
Listeriaceae. This step had a total accuracy of 98.8%, with 
Enterobacteriaceae (Ec and ST) achieving 100% classifica-
tion (N = 253), and Listeriaceae at 96.9% accuracy with 
5 cells out of 160 misclassified. Finally, in the third CA 
step, the two Enterobacteriaceae species were differ-
entiated. From biological and physiological standpoints 

these two species were most alike out of the four used. 
Both are members of the same family, are non-spore 
formers, have G– cell walls (do not retain crystal violet 
stain and have additional cell wall components not found 
in G+ bacteria), and are facultative anaerobes that use 
flagellum for motility.18 These similarities in traits are 
responsible for requiring an additional level of CA. From 
the reference data, attempting to cluster Ec, Li and ST 
into three clusters after removing Sa failed. Li formed 
one cluster, while Ec and Li formed a second. The third 
level had a combined accuracy of 99.6%, Ec classifying at 
100% with 123 cells and ST = 99.2% with 129 out of 130 
correctly identified. Combining the three levels resulted 
in a total of 1175 classifications and 99.5% accuracy. 
The CA showed promise when tested under supervised 

Figure 3. Mean spectra for four species obtained from single culture hyperspectral microscope images. (a) Raw spectra, (b) 
normalisation and standard normal variant preprocessing steps applied.

Figure 4. Divisive dendrogram showing results of a cluster analysis carried out on pure culture images of single culture 
hyperspectral microscope images.
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terms, with levels of the CA being tied to shape and taxo-
nomical differences between the four species.

Unsupervised classification of mixed cultures
Salmonella is of particular interest in this work due to the 
relevance to the poultry industry, and was prepared with 
a mixture of one, two and three other bacteria species. 
Salmonella was prepared in a mixture with each possible 
combination of the other three bacteria species for 
seven different sets of images (A–G). Table 1 lists the four 
bacteria with some physiological traits listed for compar-
ison. We can see many similarities in Ec and ST. Mixed 
cultures were repeated in triplicate for each set, and 
ROIs of single cells were extracted for analysis as previ-
ously mentioned. Figure 6 shows two image slices from 

the hypercube, both at the 650 nm band. These images 
contain a mixture of species. Visually, it was usually 
possible to differentiate between some rod and cocci 
shapes (Figure 6a), but are by no means reliable through 
visual analysis alone. Typically, cocci are smaller than rods, 
at least in the case of these organisms. Smaller spherical 
shapes have higher intensity backscatter patterns.12 It 
became increasingly more difficult to visually differen-
tiate between the three rod bacteria as seen in Figure 
6(b), likely containing Ec, Li, Sa and ST.

After performing the CA on the mixed culture HMIs, 
the cos a of the angle between each of the reference 
mean spectra and the unknown cluster’s mean spectra 
were calculated to attempt to identify the unknown 
cluster based on the reference data. These results can 
be seen in Table 2. Each image set (A–G) is listed along 
with the number of clusters from each set. The cos a was 
calculated comparing the unknown cluster to Ec, Li, Sa 
and ST. The highest value by row represents the highest 
measure of similarity to the reference data, and is marked 
with an asterisk. The results in Table 2 were unreliable. 
The highest values of similarity appear to misrepresent 
the cluster in some image sets. Because the mean cluster 
spectra were compared to each of the four reference 
bacteria, even though certain species may not have been 
present in the image, misclassifications are obvious. It 
appears that most cos a values appear to classify clusters 
as ST, indicating that cos a is unreliable in terms of a vali-
dation tool for the CA. The spectra are highly collinear in 
nature making a spectral angle distance value difficult to 
determine from the cos a values alone. Results from the 
DA can be seen in Table 3. Because the CA is  somewhat 

Figure 5. Mean species spectra for E. coli, L. innocua and 
S. aureus adjusted by the S. Typhimurium mean spectra.

E. coli L. innocua S. aureus S. Typhimurium

Taxonomy

Speciesc E. coli L. innocua S. aureus S. enteric
Genus Escherichia Listeria Staphylococcus Salmonella
Familyb Enterobacteriaceae Listeriaceae Staphylococcaceae Enterobacteriaceae
Order Enterobacteriales Bacillales Bacillales Enterobacteriales

Physical 
attributes

Shapea Rod Rod Cocci Rod
Cell Wall G– G+ G+ G–
Motility Yes—flagella Yes—flagella* No Yes—flagella

Metabolism
Facultative 
 anaerobic

Facultative 
anaerobic

Facultative 
anaerobic

Facultative 
 anaerobic

*L. innocua motility consists of flagella, but at 37°C it polymerises actin from a host cell to form a “comet” tail. aFirst level of cluster analysis, 
bsecond level of cluster analysis, cthird level of cluster analysis.

Table 1. Bacteria information on physical attributes and taxonomical levels.
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Figure 6. 650 nm band from hyperspectral microscope images of mixed bacteria cultures. (a) S. aureus and S. Typhimurium, 
(b) E. coli, L. innocua, S. aureus and S. Typhimurium.

Set Bacteria Cluster Ec Li Sa ST

A ST, Li
0 0.989 0.989 0.985 0.996*
1 0.987 0.988 0.996* 0.987

B ST, Sa
0 0.974 0.972 0.982 0.990*
1 0.981 0.977 0.979 0.992*

C ST, Ec
0 0.992* 0.980 0.976 0.992*
1 0.973 0.977 0.992 0.994*

D ST, Ec, Sa
0 0.980 0.984 0.994* 0.991
1 0.994* 0.984 0.992 0.981
2 0.985 0.987 0.989 0.996*

E ST, Li, Sa
0 0.980 0.978 0.980 0.993*
1 0.980 0.981 0.994* 0.988
2 0.981 0.982 0.988 0.994*

F ST, Ec, Li
0 0.974 0.981 0.985 0.989*
1 0.989 0.978 0.991* 0.988
2 0.982 0.978 0.988 0.993*

G ST, Ec, Li, ST

0 0.975 0.962 0.954 0.981*
1 0.977 0.965 0.958 0.983*
2 0.967 0.963 0.951 0.981*
3 0.967 0.954 0.952 0.977*

*Indicates the closest similarity between unknown cluster mean spectra and reference spectra.

Table 2. The angle the between reference set mean spectra (pure culture images) and the unknown cluster’s mean spectra 
(mixed images) calculated as the cos a.
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of an exploratory analysis, the DA was calculated to 
assess the proposed clustering of the CA. Here, unknown 
samples were assigned to clusters 0, 1, 2 or 3 (cluster ID), 
depending on how many clusters were formed per HMI. 
Using the proposed cluster number as the response vari-
able DA classification accuracies ranged between 91.9% 
and 100% for mixed culture HMIs. Image set D (Ec, Sa 
and ST) had one cluster formed through the CA that had 
six cells misclassified through the DA, resulting in the 
lowest image accuracy of 91.9%. The other six image sets 
had classification accuracies > 97%. Because the cluster’s 
identification was unreliable with the cos a it is not clear 
as to the cause of the six misclassified cells. G was the 
final image set and it contained all four bacteria with a DA 
accuracy of CA cluster assignment of 98.1%.

Cellular walls contain large varieties of proteins unique 
to the organism and its survival mechanisms.19 The Frölich 
theory states that cellular structures exhibit coherent 
longitudinal vibrations of electrically polar structures.20,21 
Most proteins are electrically polar structures.22 Given 
the constant TH light source used for HMI collection, 

the backscatter signal we are observing is potentially 
from the steady-state, non-linear vibration of those elec-
trically polar protein structures found in the cell walls, 
unique to the organism being imaged. Park et al. showed 
that Gram-positive cell walls of S. aureus differed from 
the Gram-negative cell walls of Salmonella.23 Here, CA 
portioned the individual samples into clusters and DA 
verified the accuracy of the clustering. The unsuper-
vised classification of CA may be possible due in part to 
the spectral differences influenced by the diversity of 
backscatter signal caused by the unique profiles of polar 
protein structures found in the cell walls.

Figure 7 shows several mixed culture HMIs at the 
650 nm band, with cell classification noted on the images. 
The top row is the HMI band from 650 nm, and the 
bottom row is the same image with the cell assignment 
based on unsupervised method marked. Column A is a 
mixture of Sa and ST. These cells were the most different 
in terms of shape, and are clearly separated by the spec-
tral information. Sa cells can be seen in the image as 
being smaller, and showing higher levels of pixel inten-

Set Bacteria Cluster
Correctly 
classified

Accuracy 
(%)

Total accuracy 
(%)

A ST, Li
0 49/50  98

 98.91
1 42/42 100

B ST, Sa
0 72/72 100

100
1 19/19 100

C ST, Ec
0 33/34  97.06

 97.06
1 66/68  97.06

D ST, Ec, Sa
0 30/31  95.24

 91.921 19/25  76
2 42/43  97.67

E ST, Li, Sa
0 53/55  96.36

 97.561 39/39 100
2 28/29  96.55

F ST, Ec, Li
0 30/30 100

 98.891 53/54  98.15
2 6/6 100

G ST, Ec, Li, ST

0 21/21 100

 98.06
1 32/33  96.97
2 23/24  95.83
3 25/25 100

aEc = E. coli, Li = L. innocua, Sa = S. aureus and ST = S. Typhimurium.

Table 3. Cluster analysis results (unsupervised) for mixtures of bacteria cells, with confirmation 
through a discriminant analysis to confirm accuracy percentages.
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sity. Column B shows the Ec and ST mixture image. It is 
difficult to see any difference between the two species, 
given that they are both members of the same bacteria 
family. Spectral information was similar as well, requiring 
the removal of Li and Sa from the CA, before these two 
species could be differentiated. In column C we have a 
mixture of Ec, Sa and ST cells. A few Sa cells are present. 
This image was taken from a different Sa growth repeti-
tion and the cells are slightly larger than the Sa cells 
seen in column A of Figure 7. This reduces the cell’s pixel 
intensity slightly, but the spectral information was clearly 
different from that of the three rod-shaped bacteria. 
Finally, in column D we have a mixture of all four species. 
Only a few Li cells were found in this image. Combining 
all reps with four images had an accuracy of 98.1% when 
verified by the DA.

Conclusions
Moving towards the use of hyperspectral microscope 
imaging as an applied early and rapid detection tool in 
the food industry, we investigated the use of a k-means 

CA to differentiate unknown cells in HMIs containing 
mixed bacteria cultures. The unsupervised CA classifica-
tion was followed with a discriminant analysis, in which 
a dummy variable containing the CA class results per 
cell was inserted and used as the response variable. The 
cos-a of the angle from unknown clusters to reference 
data was unsuccessful in clearly identifying each cluster 
in the mixed culture HMIs due to the high collinearly 
of the data and small alpha (a) space between vectors. 
Individual cells from the mixture of two, three or four 
cultures saw classification accuracies > 91.9%. This 
showed promise in the ability of a CA to perform unsu-
pervised classification of bacteria cells. However, the use 
of the cos-a as a validation tool for comparing unknown 
cluster mean spectra to a reference data set failed, poten-
tially due to the high collinearity of the spectra. Perhaps 
the use of scale-invariant shape metrics and statistical 
moments can be used to assign a cluster species clas-
sification. In a real-world application of this technology, 
target organisms such as Salmonella will need to be clas-
sified against an indefinite number of other microbial 
organisms. This study is meant to be a step towards 
early and rapid classification of Salmonella from a food 

Figure 7. Hyperspectral microscope images collected at 650 nm of mixed bacteria cultures. Top row: 650 nm image, bottom 
row: the same image with cells marked as cluster analysis results. Columns (a) S. aureus and S. Typhimurium, (b) E. coli and S. 
Typhimurium, (c) E. coli, S. aureus and S. Typhimurium, (d) E. coli, L. innocua, S. aureus and S. Typhimurium.
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matrix by investigating the ability to classify Salmonella 
from several other common foodborne bacteria in mixed 
culture HMIs. Future efforts will be aimed at enhancing 
HMI detection sensitivity with bacteria isolated from 
food matrices.
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Supplementary figures

ST cell Sa cell Unknown cell

Damage
DamageDamage

Figure S1. 3D surface plots of three damaged cells determined by Mahalanobis distances to be statistical outliers.  The 
unknown cell was obtained from an image containing both ST and Sa.  ST = S. Typhimurium and Sa = S. aureus.

Figure S2. PCA score plots for S. aureus. (a) Tungsten halogen normalised spectra, (b) additional standard normal variant 
treated spectra.


